REVIEW:

PROBABILITY AND STATISTICS

Sam Roweis

Machine Learning Summer School, January 2005

RANDOM VARIABLES AND DENSITIES

e Random variables X represents outcomes or states of world.
Instantiations of variables usually in lower case: x
We will write p(z) to mean probability(X = z).

e Sample Space: the space of all possible outcomes/states.

(May be discrete or continuous or mixed.)

o Probability mass (density) function p(z) > 0
Assigns a non-negative number to each point in sample space.
Sums (integrates) to unity: > p(z) =1L or [p(z)dz = 1.
Intuitively: how often does x occur, how much do we believe in z.

e Ensemble: random variable + sample space+ probability function

PROBABILITY

EXPECTATIONS, MOMENTS

e We use probabilities p(x) to represent our beliefs B(z) about the
states = of the world.

e There is a formal calculus for manipulating uncertainties
represented by probabilities.

e Any consistent set of beliefs obeying the Cox Axioms can be
mapped into probabilities.

1. Rationally ordered degrees of belief:
if B(x) > B(y) and B(y) > B(z) then B(z) > B(z)

2. Belief in = and its negation Z are related: B(z) = f[B(Z)]

3. Belief in conjunction depends only on conditionals:
B(z and y) = g[B(x), B(y|z)] = g[B(y), B(x|y)]

e Expectation of a function a(z) is written E[a] or (a)
Ela] = (a) =) _ p(w)a(z)

e.g. mean = »__ap(x), variance = »_ (v — E[z])
e Moments are expectations of higher order powers.
(Mean is first moment. Autocorrelation is second moment.)

’p(a)

o Centralized moments have lower moments subtracted away
(e.g. variance, skew, curtosis).

e Deep fact: Knowledge of all orders of moments
completely defines the entire distribution.

MEANS, VARIANCES AND COVARIANCES

o Remember the definition of the mean and covariance of a vector
random variable:

Blel = [xplxidx = m

Cov[z] = E[(x —m)(x —m)] = /(x —m)(x —m) px)dx =V

T
which is the expected value of the outer product of the variable

with itself, after subtracting the mean.

e Also, the covariance between two variables:
Cov[x,y] = E[(x — mx)(y — my)T] =C

- /Xy(x — mx)(y — my)Tp(X, y)dxdy = C

which is the expected value of the outer product of one variable
with another, after subtracting their means.
Note: C is not symmetric.

MARGINAL PROBABILITIES

e We can "sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

p(r) = plx,y)
Yy

e This is like adding slices of the table together.

z

X

e Another equivalent definition: p(z) = -, p(z|y)p(y).

JOINT PROBABILITY

e Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

o We call this a joint ensemble and write
p(x,y) = prob(X =z and Y = y)

=

4

p(x.y.2)

CONDITIONAL PROBABILITY

o If we know that some event has occurred, it changes our belief
about the probability of other events.

o This is like taking a "slice” through the joint table.
plzly) = p(z,y)/py)

1] ~

p(xylz)

BAYES’ RULE

e Manipulating the basic definition of conditional probability gives
one of the most important formulas in probability theory:

_plylx)p(x) plylz)p(r)
plaly) = ply) Dplyla)p()

e This gives us a way of "reversing” conditional probabilities.

e Thus, all joint probabilities can be factored by selecting an ordering
for the random variables and using the " chain rule”:

p(x,y, 2 ...) = pla)plyle)p(zlz, y)p(. . . |2, y, 2)]

ENTROPY

e Measures the amount of ambiguity or uncertainty in a distribution:

Zp) log p(x

e Expected value of —log p(x) (a function which depends on p(x)!).

e H(p) > 0 unless only one possible outcomein which case H(p) =

e Maximal value when p is uniform.

e Tells you the expected "cost” if each event costs — log p(event)

0.

INDEPENDENCE & CONDITIONAL INDEPENDENCE

e Two variables are independent iff their joint factors:

p(x,y) = p(x)p(y)
LT T Jee

X

p(.y)

p(Y)

e Two variables are conditionally independent given a third one if for
all values of the conditioning variable, the resulting slice factors:

plx,ylz) = p(z[2)p(ylz) V=2

Cross ENTROPY (KL DIVERGENCE)

e An assymetric measure of the distancebetween two distributions:

KLpllq = Zp)[log p(x) — log q(x)]

e KL > 0 unless p = g then KL:()

e Tells you the extra cost if events were generated by p(x) but
instead of charging under p(z) you charged under g(z).

STATISTICS

e Probability: inferring probabilistic quantities for data given fixed
models (e.g. prob. of events, marginals, conditionals, etc).

e Statistics: inferring a model given fixed data observations
(e.g. clustering, classification, regression).

e Many approaches to statistics:
frequentist, Bayesian, decision theory, ...

(CONDITIONAL) PROBABILITY TABLES

o For discrete (categorical) quantities, the most basic parametrization
is the probability table which lists p(x; = kth value).

e Since PTs must be nonnegative and sum to 1, for k-ary variables
there are k — 1 free parameters.
e If a discrete variable is conditioned on the values of some other

discrete variables we make one table for each possible setting of the
parents: these are called conditional probability tables or CPTs.

| <1 -~

p(x.y.2) p(x.yl2)

SOME (CONDITIONAL) PROBABILITY FUNCTIONS

EXPONENTIAL FAMILY

e Probability density functions p(x) (for continuous variables) or
probability mass functions p(x = k) (for discrete variables) tell us
how likely it is to get a particular value for a random variable
(possibly conditioned on the values of some other variables.)

e We can consider various types of variables: binary/discrete
(categorical), continuous, interval, and integer counts.

e For each type we'll see some basic probability models which are
parametrized families of distributions.

e For (continuous or discrete) random variable x
p(x|n) = h(x) exp{n' T(x) — A(n)}

1 T
%h(x) exp{n T(x)}

is an exponential family distribution with
natural parameter 7).

e Function T'(x) is a sufficient statistic.
e Function A(n) = log Z(n) is the log normalizer.

e Key idea: all you need to know about the data is captured in the
summarizing function 7'(x).

BERNOULLI DISTRIBUTION

e For a binary random variable z = {0, 1} with p(z = 1) =

plalm) = 7*(1 = m)t ="

— exp {log (1 T) z + log(1 — n)}

e Exponential family with:

MULTINOMIAL

e For a categorical (discrete), random variable taking on K possible
values, let 7. be the probability of the k" value. We can use a
binary vector x = (x1,29,..., %}, ...,Zf) in which ;=1 if and
only if the variable takes on its k' value. Now we can write,

€2 .

p(x|m) = 7)'m; 7TK = exp Zx,logm

1 = log
1 —
T(z) == Exactly like a probability table, but written using binary vectors.
A(n) = —log(1 — m) = log(1 + €") o If we observe this variable several times X = {xl, X2, ... ,XN}, the
h(z) =1 (iid) probability depends on the total observed counts of each value:
e The logistic function links natural parameter and chance of heads p(X|r) = HP (x"|m) =exp {>; (X, z") logm; } = exp {>"; cilog m;}
= logistic(n)
PoI1ssoN MULTINOMIAL AS EXPONENTIAL FAMILY

e For an integer count variable with rate \:

p(z|A) =

AL -2

e Exponential family with:

n = log A
T(x)==x
Am)=r=¢"

1

e e.g. number of photons x that arrive at a pixel during a fixed
interval given mean intensity A

o Other count densities: (neg)binomial, geometric.

e The multinomial parameters are constrained: » ; 7; = 1.
Define (the last) one in terms of the rest: 7w =1 — ZKllm

p(x|m) = exp {21‘:;1 log <ﬁ) x; + klog WK}
e Exponential family with:
n; = logm; —logmy
T(xi) = x;
A(n) = —klogjm(klog) ;e
h(x) =

e The softmax function relates direct and natural parameters:

GAUSSIAN (NORMAL)

IMPORTANT GAUSSIAN FACTS

e For a continuous univariate random variable:

pla|p, %) = ! exp{— ! (x—u)g}

V2o 202
1 U ? ,LL2 1
= exXpl —5 ——5 — —5 — logo
2ro P o2 202 202 5

e Exponential family with: ’/\

n=lu/o*; —1/207
T(x) = [w; o7
A(n) =logo + /20°
h(z) =1/vV2r
e Note: a univariate Gaussian is a two-parameter distribution with a
two-component vector of sufficient statistis.

o All marginals of a Gaussian are again Gaussian.
Any conditional of a Gaussian is again Gaussian.

p(y|x=x0)

'\xo p(X,y)

MULTIVARIATE GAUSSIAN DISTRIBUTION

e For a continuous vector random variable:

plelp, 2) = 278 " exp {—%(X —) (x - u)}

e Exponential family with:

n=[S""u; —1/2571
T(z) = [x; xx']
Aln) =log |S|/2+ p 'S p/2

h(z) = (2m) "/
o Sufficient statistics: mean vector and correlation matrix.

o Other densities: Student-t, Laplacian.

e For non-negative values use exponential, Gamma, log-normal.

GAUSSIAN MARGINALS/ CONDITIONALS

e To find these parameters is mostly linear algebra:
Let z = [x"y']" be normally distributed according to:

SRR (SR)

where C is the (non-symmetric) cross-covariance matrix between x
and y which has as many rows as the size of x and as many
columns as the size of y.

The marginal distributions are:

x~ N(a;A)
y ~N(b;B)
and the conditional distributions are:
xly ~ M@+ CB Yy —b);A - CB~'C")
yjx ~N(b+C A (x—a);B-CTA™IC)

PARAMETER CONSTRAINTS

e If we want to use general optimizations (e.g. conjugate gradient) to
learn latent variable models, we often have to make sure parameters
respect certain constraints. (e.g. > ;. ap = 1, ¥ pos.definite).

e A good trick is to reparameterize these quantities in terms of
unconstrained values. For mixing proportions, use the softmax:

__exp(gy)
> exp(gy)

e For covariance matrices, use the Cholesky decomposition:

nl=ATA
=2 =TT 4a
1
where A is upper diagonal with positive diagonal:

Aji=exp(r;)) >0 Ajj=a; (G>1) A;;=0 (j<i)

PARAMETERIZING CONDITIONALS

e When the variable(s) being conditioned on (parents) are discrete,
we just have one density for each possible setting of the parents.
e.g. a table of natural parameters in exponential models or a table
of tables for discrete models.

e When the conditioned variable is continuous, its value sets some of
the parameters for the other variables.

e A very common instance of this for regression is the
“linear-Gaussian”: p(y|x) = gauss(6'x;X).

e For discrete children and continuous parents, we often use a
Bernoulli/multinomial whose paramters are some function f(6'x).

MOMENTS

e For continuous variables, moment calculations are important.

o We can easily compute moments of any exponential family
distribution by taking the derivatives of the log normalizer A(7).

e The ¢ derivative gives the ¢'"" centred moment.

dA
i = mean
dn
d’A
(77) = variance

e When the sufficient statistic is a vector, partial derivatives need to
be considered.

GENERALIZED LINEAR MODELS (GLMs)

o Generalized Linear Models: p(y|x) is exponential family with
conditional mean p = f(6x).

e The function f is called the response function; if we chose it to be
the inverse of the mapping b/w conditional mean and natural
parameters then it is called the canonical response function.

n=1(u)
—1
) =47()
e We can be even more general and define distributions by arbitrary
energy functions proportional to the log probability.

p(x) o exp{— Y H}(x)}
k

e A common choice is to use pairwise terms in the energy:

H(X) = Z a;x; + Z Wy Ti 5
1

pairs

MATRIX INVERSION LEMMA
(SHERMAN-MORRISON-WOODBURY FORMULAE)

JENSEN’S INEQUALITY

e There is a good trick for inverting matrices when they can be
decomposed into the sum of an easily inverted matrix (D) and a
low rank outer product. It is called the matrix inversion lemma.

(D—AB AN 1 =D 14+ D'AB-ATD 14" 1ATD!
e The same trick can be used to compute determinants:
log|D + AB~'AT| = log|D| —log |B| +log |B+ ATD™ ! A|

e For any concave function f() and any distribution on x,
Elf(@)] < f(Elz])
f(E[X])

(0]

eeg. log() and ,/ are concave
e This allows us to bound expressions like log p(z) =log). p(x, 2)

MATRIX DERIVATIVES

o Here are some useful matrix derivatives:

O =T
8—Alog|A|—(A)

0 T
a—Atrace[B Al=B

9 T
a—Atrace[BA CA]=2CAB

LoGgsum

e Often you can easily compute by = log p(x|z = k, 0y,),
but it will be very negative, say -10° or smaller.

e Now, to compute ¢ = log p(x|6) you need to compute log > ;. elk.
(e.g. for calculating responsibilities at test time or for learning)

o Careful! Do not compute this by doing log(sum(exp(b))).
You will get underflow and an incorrect answer.

o Instead do this:

—Add a constant exponent B to all the values b;. such that the
largest value comes close to the maxiumum exponent allowed by
machine precision: B = MAXEXPONENT-1log (K)-max (b).

— Compute log(sum(exp(b+B)))-B.

e Example: if logp(z|z = 1) = —120 and log p(z|z = 2) = —120,
what is log p(z) = log [p(z|z = 1) + p(x|z = 2)|?

Answer: log[2e™12Y] = —120 + log 2.

LECTURE 1:

PROBABILISTIC GRAPHICAL MODELS

Sam Roweis

Monday January 24, 2005
Machine Learning Summer School

CORE VvS. PROBABILISTIC Al

e KR: work with facts/assertions; develop rules of logical inference

e Planning: work with applicability/effects of actions; develop
searches for actions which achieve goals/avert disasters.

e Expert Systems: develop by hand a set of rules for examining
inputs, updating internal states and generating outputs

e Learning approach: use probabilistic models to tune performance
based on many data examples.

e Probabilistic Al: emphasis on noisy measurements, approximation in

hard cases, learning, algorithmic issues.

logical assertions = probability distributions

logical inference = conditional probability distributions
logical operators = probabilistic generative models

INTELLIGENT COMPUTERS

o We want intelligent, adaptive, robust behaviour.

= Sam Roweis
e Often hand programming not possible.

e Solution? Get the computer to program itself, by showing it
examples of the behaviour we want!
This is the learning approach to Al.

e Really, we write the structure of the program and the computer
tunes many internal parameters.

THE POWER OF LEARNING

e Probabilistic Databases

— traditional DB technology cannot answer queries about items
that were never loaded into the dataset

— UAI models are like probabilistic databases

o Automatic System Building
—old expert systems needed hand coding

of knowledge and of output semantics

—learning automatically constructs rules
and supports all types of queries

UNCERTAINTY AND ARTIFICIAL INTELLIGENCE (UAI)

APPLICATIONS OF PROBABILISTIC LEARNING

e Probabilistic methods can be used to:
— make decisions given partial information about the world
— account for noisy sensors or actuators
—explain phenomena not part of our models
— describe inherently stochastic behaviour in the world

e Example: you live in California with your spouse and two kids. You
listen to the radio on your dirve home, and when you arrive you find
your burglar alarm ringing.

Do you think your house was broken into?

e Automatic speech recognition & speaker verification

e Printed and handwritten text parsing

e Face location and identification

e Tracking/separating objects in video

e Search and recommendation (e.g. google, amazon)

e Financial prediction, fraud detection (e.g. credit cards)

e Insurance premium prediction, product pricing

e Medical diagnosis/image analysis (e.g. pneumonia, pap smears)
e Game playing (e.g. backgammon)

e Scientific analysis/data visualization (e.g. galaxy classification)

e Analysis/control of complex systems (e.g. freeway traffic, industrial
manufacturing plants, space shuttle)

e Troubleshooting and fault correction

OTHER NAMES FOR UAI

RELATED AREAS OF STUDY

e Machine learning, data mining, applied statistics, adaptive
(stochastic) signal processing, probabilistic planning/reasoning...

e Some differences:
— Data mining almost always uses large data sets, statistics almost
always small ones.
— Data mining, planning, decision theory often have no internal
parameters to be learned.
— Statistics often has no algorithm to run!
—ML/UAI algorithms are rarely online and rarely scale to huge
data (changing now).
e Learning is most useful when the structure of the task is not well
understood but can be characterized by a dataset with strong

statistical regularity. Also useful in adaptive or dynamic situations
when the task (or its parameters) are constantly changing.

e Adaptive data compression/coding:
— state of the art methods for image compression and error
correcting codes all use learning methods

e Stochastic signal processing:
— denoising, source separation, scene analysis, morphing

® Decision making, planning:
— use both utility and uncertainty optimally, e.g. influence diagrams

e Adaptive software agents / auctions / preferences — action choice
under limited resources and reward signals

CANONICAL TASKS

e Supervised Learning: given examples of inputs and corresponding
desired outputs, predict outputs on future inputs.
Ex: classification, regression, time series prediction

e Unsupervised Learning: given only inputs, automatically discover
representations, features, structure, etc.
Ex: clustering, outlier detection, compression

e Rule Learning: given multiple measurements, discover very common
joint settings of subsets of measurements.

e Reinforcement Learning: given sequences of inputs, actions from a
fixed set, and scalar rewards/punishments, learn to select action
sequences in a way that maximizes expected reward.

[Last two will not be covered in these lectures.|

USING RANDOM VARIABLES TO REPRESENT THE WORLD

o We will use mathematical random variables to encode everything
we know about the task: inputs, outputs and internal states.

e Random variables may be discrete/categorical or continuous/vector.
Discrete quantities take on one of a fixed set of values,
e.g. {0,1}, {email,spam}, {sunny,overcast,raining}.
Continuous quantities take on real values.
e.g. temp=12.2, income=38231, blood-pressure=58.9

o Generally have repeated measurements of same quantities.
Convention: 14, 7, ... indexes components/variables/dimensions;
n,m, ... indexes cases/records, x are inputs, y are outputs.

-z is the value of the it" input variable on the n'"" case

- y}n is the value of the jth output variable on the mth case

Xy, is a vector of all inputs for the nth case
X ={x1,...,Xp,..., Xy} are all the inputs

REPRESENTATION

e Key issue: how do we represent information about the world?
(e.g. for an image, do we just list pixel values in some order?)

— 127,254,3,18,...

o We must pick a way of numerically representing things that exploits
regularities or structure in the data.

e To do this, we will rely on probability and statistics, and in
particular on random variables.

e A random variable is like a variable in a computer program that
represents a certain quantity, but its value changes depending on
which data our program is looking at. The value a random
variables is often unknown/uncertain, so we use probabilities.

STRUCTURE OF LEARNING MACHINES

e Given some inputs, expressed in our representation, how do we
calculate something about them (e.g. this is Sam'’s face)?

e Our computer program uses a mathematical function z = f(x)
x is the representation of our input (e.g. face)
z is the representation of our output (e.g. Sam)

e Hypothesis Space and Parameters:
We don't just make up functions out of thin air. We select them
from a carefully specified set, known as our hypothesis space.

o Generally this space is indexed by a set of parameters 6 which are
knobs we can turn to create different machines:
H:{f(zlx,0)}

e Hardest part of doing probabilistic learning is deciding how to
represent inputs/outputs and how to select hypothesis spaces.

Loss FUNCTIONS FOR TUNING PARAMETERS

e Let inputs=X, correct answers=Y, outputs of our machine=Z.

e Once we select a representation and hypothesis space,
how do we set our parameters 67

o We need to quantify what it means to do well or poorly on a task.

e We can do this by defining a loss function L(X,Y, Z)
(or just L(X,Z) in unsupervised case).

e Examples:
Classification: zp(xy,) is predicted class. L=73%",lyn # 2n(xn))

Regression: z;,(xy) is predicted output. L =" |yn— Zn(Xn)H2

Clustering: z. is mean of all cases assigned to cluster c.
— : 2
L =32, mine [|xn — z

o Now set parameters to minimize average loss function.

SAMPLING ASSUMPTION

e Imagine that our data is created randomly, from a joint probability
distribution p(x,y) which we don't know.

e We are given a finite (possibly noisy) training sample:
{X1,¥15-»Xn, Yn, - - -, XN YN} With members n generated
independently and identically distributed (iid).

e Looking only at the training data, we construct a machine that
generates outputs z given inputs. (Possibly by trying to build
machines with small training error.)

e Now a new sample is drawn from the same distribution as the
training sample.

e We run our machine on the new sample and evaluate the loss; this
is the test error.

e Central question: by looking at the machine, the training data and
the training error, what if anything can be said about test error?

TRAINING VS. TESTING

e Training data: the X, Y we are given.
Testing data: the X,Y we will see in future.

e Training error. the average value of loss on the training data.
Test error. the average value of loss on the test data.

e What is our real goal? To do well on the data we have seen already?
Usually not. We already have the answers for that data. We want
to perform well on future unseen data. So ideally we would like to
minimize the test error. How to do this if we don't have test data?

o Probabilistic framework to the rescuel

GENERALIZATION AND OVERFITTING

e Crucial concepts: generalization, capacity, overfitting.

e What's the danger in the above setup? That we will do well on
training data but poorly on test data. This is called overfitting.

e Example: just memorize training data and give random outputs on
all other data.

e Key idea: you can't learn anything about the world without making
some assumptions.
(Although you can memorize what you have seen).

e Both representation and hypothesis class (model choice) represent
assumptions we make.

e The ability to achieve small loss on test data is generalization.

CAPACITY: COMPLEXITY OF HYPOTHESIS SPACE

e Learning == Search in Hypothesis Space

o Inductive Learning Hypothesis: Generalization is possible.
If a machine performs well on most training data AND it is not too
complex, it will probably do well on similar test data.

e Amazing fact: in many cases this can actually be proven. In other
words, if our hypothesis space is not too complicated /flexible (has a
low capacity in some formal sense), and if our training set is large
enough then we can bound the probability of performing much
worse on test data than on training data.

e The above statement is carefully formalized in 20 years of research
in the area of learning theory.

FORMAL SETUP

e Cast machine learning tasks as numerical optimization problems.

e Quantify how well the machine pleases us by a scalar objective
function which we can evaluate on sets of inputs/outputs.

e Represent given inputs/outputs as arguments to this function.

e Also introduce a set of unknown parameters 6 which are also
arguments of the objective function.

e Goal: adjust unknown parameters to minimize objective function
given inputs/outputs.

arg m@in d(X,Y|0)

e The art of designing a machine learning system is to select the
numerical representation of the inputs/outputs and the
mathematical formulation of the task as an objective function.

e The mechanics involve optimizing the objective function given the
observed data to find the best parameters. (Often leads to art!)

INDUCTIVE Bias

e The converse of the Inductive Learning Hypothesis is that
generalization only possible if we make some assumptions, or
introduce some priors. We need an Inductive Bias.

e No Free Lunch Theorems: an unbiased learner can never generalize.

e Consider: arbitrarily wiggly functions or random truth tables or
non-smooth distributions.

000

001
010
011
100
101
110
111

VR VO RRLRVO

GENERAL OBJECTIVE FUNCTIONS

e The general structure of the objective function is:
O(X,0) = L(X|0) + P(0)
e [is the loss function, and P is a penalty function which penalizes
more complex models.

e This says that it is good to fit the data well (get low training loss)
but it is also good to bias ourselves towards simpler models to
avoid overfitting.

PROBABILISTIC APPROACH

e Given the above setup, we can think of learning as estimation of
joint probability density functions given samples from the functions.

o Classification and Regression: conditional density estimation p(y|x)
e Unsupervised Learning: density estimation p(x)

e The central object of interest is the joint distribution and the main
difficulty is compactly representing it and robustly learning its shape
given noisy samples.

e Our inductive bias is expresses as prior assumptions about these
Jjoint distributions.

e The main computations we will need to do during the operation of
our algorithms are to efficiently calculate marginal and conditional
distributions from our compactly represented joint model.

CONDITIONAL INDEPENDENCE

e Notation: x4 L xp|x¢
Definition: two (sets of) variables x 4 and x g are conditionally
independent given a third x¢ if:

P(x4,xplxc) = P(xalxc)P(xplxc) Vxc
which is equivalent to saying
P(xalxp xc) = P(xalxc) Yx¢
e Only a subset of all distributions respect any given (nontrivial)
conditional independence statement. The subset of distributions

that respect all the Cl assumptions we make is the
family of distributions consisitent with our assumptions.

e Probabilistic graphical models are a powerful, elegant and simple
way to specify such a family.

JOINT PROBABILITIES

e Goal 1: represent a joint distribution P(X) = P(xy,X9,...,Xp)
compactly even when there are many variables.

e Goal 2: efficiently calculate marginal and conditionals of such
compactly represented joint distributions.

e Notice: for n discrete variables of arity &, the naive (table)
representation is HUGE: it requires k" entries.

e We need to make some assumptions about the distribution.
One simple assumption: independence == complete factorization:
P(X) = [1; P(x)
e But the independence assumption is too restrictive.
So we make conditional independence assumptions instead.

PROBABILISTIC GRAPHICAL MODELS

e Probabilistic graphical models represent large joint distributions
compactly using a set of “local” relationships specified by a graph.

e Each random variable in our model corresponds to a graph node.

e There are directed/undirected edges between the nodes which tell
us qualitatively about the factorization of the joint probability.

e There are functions stored at the nodes which tell us the

quantitative details of the pieces into which the distribution factors.
Xa

X2

.

. O—0O—=0

Xa Xs

Xe

e Graphical models are also known as Bayes(ian) (Belief) Net(work)s.

DIRECTED GRAPHICAL MODELS

o Consider directed acyclic graphs over n variables.

e Each node has (possibly empty) set of parents ;.

e Each node maintains a function f;(x;;xz,) such that
fi >0 and in filzi Xq,) = 1Vm;.

o Define the joint probability to be:

P(x1,x2,...,xn) = | [filwi; xx,)

Even with no further restriction on the the f;, it is always true that
filwi:xg,) = Pxilxn;)
so we will just write

P(Xla Xy 7Xn) - H P(xi|X7TZ’)

o Factorization of the joint in terms of local conditional probabilities.
Exponential in “fan-in" of each node instead of in total variables n.

ExaMPLE DAG

e Consider this six node network: The joint probability is now:
Xa

Xz
X, P(x1,X2,X3,X4,X5,X6) =

6< P(x1)P (21 P (x5x1)
o P (x4 3x2) P (x5 x3) P (x|, X5)

Xa Xs

CONDITIONAL INDEPENDENCE IN DAGS

o If we order the nodes in a directed graphical model so that parents
always come before their children in the ordering then the graphical
model implies the following about the distribution:

{J}Z' 1 Xﬁ’Xwi}Vi
where Xz, are the nodes coming before x; that are not its parents.

e In other words, the DAG is telling us that each variable is
conditionally independent of its non-descendants given its parents.

e Such an ordering is called a “topological” ordering.

MissiING EDGES

e Key point about directed graphical models:
Missing edges imply conditional independence

e Remember, that by the chain rule we can always write the full joint
as a product of conditionals, given an ordering:

P(x1,X2,%3,Xy, . ..) = P(x1)P(xa[x1)P(x3|x1, X2)P(x4]x1, X2,%3) . . .

o If the joint is represented by a DAGM, then some of the
conditioned variables on the right hand sides are missing.
This is equivalent to enforcing conditional independence.

e Start with the “idiot’s graph”: each node has all previous nodes in
the ordering as its parents.

e Now remove edges to get your DAG.

e Removing an edge into node ¢ eliminates an argument from the
conditional probability factor p(z;|x1,%9,...,%;_1)

EVEN MORE STRUCTURE

e Surprisingly, once you have specified the basic conditional
independencies, there are other ones that follow from those.

e In general, it is a hard problem to say which extra Cl statements
follow from a basic set. However, in the case of DAGMs, we have
an efficient way of generating all Cl statements that must be true
given the connectivity of the graph.

e This involves the idea of d-separation in a graph.

e Notice that for specific (numerical) choices of factors at the nodes
there may be even more conditional independencies, but we are
only concerned with statements that are always true of every
member of the family of distributions, no matter what specific
factors live at the nodes.

e Remember: the graph alone represents a family of joint distributions
consistent with its Cl assumptions, not any specific distribution.

UNDIRECTED MODELS

e Also graphs with one node per random variable and edges that
connect pairs of nodes, but now the edges are undirected.

e Semantics: every node is conditionally independent from its
non-neighbours given its neighbours, i.e.
x4 L x| xp if every path b/w x4 and x¢ goes through xp

Xa
Xe

e Can model symmetric interactions that directed models cannot.

e aka Markov Random Fields, Markov Networks, Boltzmann
Machines, Spin Glasses, Ising Models

EXPLAINING AWAY

VIEK
O

Y

o Q: When we condition on y, are x and z independent?
P(x,y,7) = P()P(z)P(y[x,)
e x and z are marginally independent, but given y they are
conditionally dependent.
e This important effect is called explaining away (Berkson's paradox.)

e For example, flip two coins independently; let x=coinl,z=coin2.
Let y=1 if the coins come up the same and y=0 if different.

e x and z are independent, but if | tell you y, they become coupled!

SIMPLE GRAPH SEPARATION

e In undirected models, simple graph separation (as opposed to
d-separation) tells us about conditional independencies.

e x, L x¢|xp if every path between x 4 and x(is blocked
by some node in xp.

e “Markov Ball" algorithm:
remove xp and see if there is any path from x 4 to x(.

CONDITIONAL PARAMETERIZATION?

e In directed models, we started with p(X) = [[, p(z;|xx,) and we
derived the d-separation semantics from that.

e Undirected models: have the semantics, need parametrization.
e What about this “conditional parameterization”?
p(X) = Hp(xﬂxneighbours(i))
1

e Good: product of local functions.
Good: each one has a simple conditional interpretation.
Bad: local functions cannot be arbitrary, but must agree properly in
order to define a valid distribution.

CLIQUE POTENTIALS

e Whatever factorization we pick, we know that only connected
nodes can be arguments of a single local function.

e A clique is a fully connected subset of nodes.
e Thus, consider using a product of positive clique potentials:
Px) = T wetxo) z=% I wetxo
cliques ¢ X cliques ¢
e The product of functions that don't need to agree with each other.
o Still factors in the way that the graph semantics demand.

o Without loss of generality i
we can restrict ourselves to o
maximal cliques. (Why?)

MARGINAL PARAMETERIZATION?

e OK, what about this “marginal parameterization”?

p(X) = Hp(ﬁi, Xneighbours(i))
1
e Good: product of local functions.
Good: each one has a simple marginal interpretation.
Bad: only very few pathalogical marginals on overalpping nodes can
be multiplied to give a valid joint.

X; Xi+1

-1 1 -1 1

-1(15(02 -1/15(0.2
Xi_1 Xi

1]02|15 1j02[15

(b)

BOLTZMANN DISTRIBUTIONS

e We often represent the clique potentials using their logs:

bolxe) = exp{—He(xc)}
for arbitrary real valued “energy” functions H(xc).

The negative sign is a standard convention.

e This gives the joint a nice additive structure:

PX) = Soxp{~ 3 Helxe)) = 5 exp{~H(X))

cliques C'

where the sum in the exponent is called the “free energy”:

H(X) =Y Helx)
C

e This way of defining a probability distribution based on energies is
the “Boltzmann distribution” from statistical physics.

ExXAMPLE: ISING MODELS

e Common model for binary nodes: spin-glass/ Ising lattice.

e Nodes are arranged in a regular topology (often a regular packing
grid) and connected only to their geometric neighbours.

0000
&S}Q{D{)

e For example, if we think of each node as a pixel, we might want to
encourage nearby pixels to have similar intensities.

e Energy is of the form:

PARTITION FUNCTION

e Normalizer Z(X) above is called the “partition function”.

e Computing the normalizer and its derivatives can often be the
hardest part of inferene and learning in undirected models.

o Often the factored structure of the distribution makes it possible to
efficiently do the sums/integrals required to compute Z.

e Don't always have to compute 7, e.g. for conditional probabilities.

INTERPRETATION OF CLIQUE POTENTIALS

O—0—0

e The model implies x | z |y

p(x,y,2) = p(y)p(x|y)p(zly)
o We can write this as:
p(x,y,2z) = p(x,y)p(zly) = ¥xy(X, y)ys(y. 2)
p(X7 y, Z) - p(X|y)p(Z, y) = 1/fxy(xa Y)wyZ(YJ Z)

cannot have all potentials be marginals
cannot have all potentials be conditionals

e The positive clique potentials can only be thought of as general
“compatibility”, “goodness’ or “happiness” functions over their
variables, but not as probability distributions.

EXPRESSIVE POWER

e Can we always convert directed < undirected?

e No. w
X Y X Q\ Y
z z
@) ()

No directed model

No undirected model
can represent these

can represent these
and only these
independencies.
x1ly

and only these
independencies.
x Lyl|{w,z}
wlz|{x¥y}

ProBABILITY TABLES & CPTs

e For discrete (categorical) variables, the most basic parametrization
is the probability table which lists p(z = k" value).

e Since PTs must be nonnegative and sum to 1, for k-ary nodes
there are k — 1 free parameters.

e If a discrete node has discrete parent(s) we make one table for each
setting of the parents: this is a conditional probability table or CPT.

WHAT’S INSIDE THE NODES/CLIQUES?

EXPONENTIAL FAMILY

e We've focused a lot on the structure of the graphs in directed and
undirected models. Now we'll look at specific functions that can
live inside the nodes (directed) or on the cliques (undirected).

e For directed models we need prior functions p(z;) for root nodes
and parent-conditionals p(x;|xy;) for interior nodes.

e For undirected models we need clique potentials ¥ (x¢) on the
maximal cliques (or log potentials/energies H(x()).

e We'll consider various types of nodes: binary/discrete (categorical),
continuous, interval, and integer counts.

o We'll see some basic probability models (parametrized families of
distributions); these models live inside nodes of directed models.

e We'll also see a variety of potential /energy functions which take
multiple node values as arguments and return a scalar
compatibility; these live on the cliques of undirected models.

e For a numeric random variable x
p(x|n) = h(x) exp{n'T(x) — A(n)}

1 T
%h(x) exp{n T(x)}

is an exponential family distribution with
natural parameter 7).

e Function T'(x) is a sufficient statistic.
e Function A(n) = log Z(n) is the log normalizer.

e Key idea: all you need to know about the data in order to estimate
parameters is captured in the summarizing function 7T'(x).

e Examples: Bernoulli, binomial /geometric/negative-binomial,
Poisson, gamma, multinomial, Gaussian, ...

MOMENTS

e For numeric nodes, moment calculations are important.

e We can easily compute moments of any exponential family
distribution by taking the derivatives of the log normalizer A(n).

e The qth derivative gives the qth’ centred moment.

dA(n)
dn

d’A(n)
an

= mear

= variance

o When the sufficient statistic is a vector, partial derivatives need to
be considered.

GLMs AND CANONICAL LINKS

o Generalized Linear Models: p(y|x) is exponential family with
conditional mean p; = f;(0"x).
e The function f is called the response function.

e If we chose f to be the inverse of the mapping b/w conditional
mean and natural parameters then it is called the canonical
response function or canonical link:

n =Y
—1
fO)=v7()
e Example: logistic function is canonical link for Bernoulli variables;
softmax function is canonical link for multinomials

NODES WITH PARENTS

o When the parent is discrete, we just have one probability model for
each setting of the parent. Examples:
— table of natural parameters (exponential model for cts. child)
— table of tables (CPT model for discrete child)

e When the parent is numeric, some or all of the parameters for the
child node become functions of the parent’s value.

e A very common instance of this for regression is the
“linear-Gaussian”: p(y|x) = gauss(0'x;).

e For classification, often use Bernoulli/Multinomial densities whose
parameters 7 are some function of the parent: m; = f;(x).

POTENTIAL FUNCTIONS

o We are much less constrained with potential functions, since they
can be any positive function of the values of the clique nodes.

® Recall ¢ (x¢) = exp{—He(x¢)}
e A common (redundant) choice for cliques which are pairs is:

H(X) = Z a;x; + Z Wy Ti 5
7

pairs

o5es

LECTURE 2:

PARAMETER LEARNING IN
FurLLy OBSERVED GRAPHICAL MODELS

Sam Roweis

Tuesday January 25, 2005
Machine Learning Summer School

LEARNING GRAPHICAL MODELS FROM DATA

e In Al the bottleneck is often knowledge acquisition.

e Human experts are rare, expensive, unreliable, slow.
But we have lots of machine readable data.

o Want to build systems automatically based on data and a small
amount of prior information (e.g. from experts).

ﬂ: Sam Roweis :> Geoff Hinton

e In this course, our “systems” will be probabilistic graphical models.

e Assume the prior information we have specifies type & structure of
the GM, as well as the mathematical form of the parent-conditional
distributions or clique potentials.

e In this case learning = setting parameters.
(“Structure learning” is also possible but we won't consider it now.)

REVIEW: GOAL OF GRAPHICAL MODELS

o Graphical models aim to provide compact factorizations of large
joint probability distributions.

o These factorizations are achieved using local functions which
exploit conditional independencies in the models.

e The graph tells us a basic set of conditional independencies that
must be true. From these we can derive more that also must be
true. These independencies are crucial to developing efficient
algorithms valid for all numerical settings of the local functions.

o Local functions tell us the quantitative details of the distribution.

e Certain numerical settings of the distribution may have more
independencies present, but these do not come from the graph.

BASIC STATISTICAL PROBLEMS

e Let's remind ourselves of the basic problems we discussed on the
first day: density estimation, clustering classification and regression.
e Can always do joint density estimation and then condition:
Regression: p(y|x) = p(y,x)/p(x) = p(y,x)/ [p(y,x)dy
Classification: p(c|x) = p(c, x)/p(x) = p(c,x)/ Y. p(c, x)
Clustering: p(c|x) = p(c,x)/p(x) ¢ unobserved
Density Estimation: p(y|x) = p(y,x)/p(x) x unobserved

In general, if certain nodes are If certain nodes are always unob-
always observed we may not served they are called hidden or
want to model their density: latent variables (more later):

X z

@ @

Y X

Regression /Classification Clustering/Density Est.

MuULTIPLE OBSERVATIONS, COMPLETE DATA, IID SAMPLING

e A single observation of the data X is rarely useful on its own.

o Generally we have data including many observations, which creates

a set of random variables: D = {x!,x% ... x™}

e We will assume two things (for now):
1. Observations are independently and identically distributed
according to joint distribution of graphical model: 1ID samples.
2. We observe all random variables in the domain on each
observation: complete data.

e We shade the nodes in a graphical model to indicate they are
observed. (Later you will see unshaded nodes corresponding to
missing data or latent variables.)

X1 X2 X3

Xn

MAXIMUM LIKELIHOOD

e For IID data:
p(D]f) = Hp x"|6)

00;D) = Zlogp(XmW)

m

e Idea of maximum likelihod estimation (MLE): pick the setting of
parameters most likely to have generated the data we saw:

Oy, = argmaxy £(6; D)
e Very commonly used in statistics.
Often leads to “intuitive”, “appealing”, or “natural” estimators.

o For a start, the [ID assumption makes the log likelihood into a sum,
so its derivative can be easily taken term by term.

LIKELIHOOD FUNCTION

e So far we have focused on the (log) probability function p(x|6)
which assigns a probability (density) to any joint configuration of
variables x given fixed parameters 6.

e But in learning we turn this on its head: we have some fixed data
and we want to find parameters.

e Think of p(x|) as a function of @ for fixed x:
L(0:x) = p(x[0)
£(0;x) = log p(x|0)
This function is called the (log) “likelihood".
e Chose) to maximize some cost function ¢(6) which includes ¢(6):
c(0) = 4(0; D) maximum likelihood (ML)
c(0) =£(0;D)+1r(0) maximum a posteriori (MAP)/penalizedML

(also cross-validation, Bayesian estimators, BIC, AIC, ...)

EXAMPLE: BERNOULLI TRIALS

o We observe M iid coin flips: D=H,H,T H,...
e Model: p(H)=6 p(T)=(1-20)
o Likelihood:

((6: D) = log p(DI0)

logH@Xm "
1og02x +log(1 —0) Z (1—x"

m m

= log O Ny + log(1 — 6) Nt

o Take derivatives and set to zero:

9t _ Ny _ Nr
a0 0 1—-46
Ny
:QK{L NH—i-NT

EXAMPLE: MULTINOMIAL

EXAMPLE: LINEAR REGRESSION

e We observe M iid die rolls (K-sided): D=3,1,K.2,...
e Model: p(k) =6, > 10p=1
o Likelihood (for binary indicators [x"" = kJ):

£(0; D) = log p(D|0)

= log H Oxm = log H ngm:l] e Ql[j(m:k]

m m

=S 10g6, Y X" =k = 3 Ny log,
Lk m k

e Take derivatives and set to zero (enforcing) ;. 05 = 1):

96 _ Ny _
89k_9k:
Nj.

* __ R
:>0ka

EXAMPLE: UNIVARIATE NORMAL

EXAMPLE: LINEAR REGRESSION

o We observe M iid real samples: D=1.18,-.25,.78,. ..
e Model: p(z) = (2rg?)~1/2 exp{—(z — p)?/20°%}
o Likelihood (using probability density):

(6 D) = log p(D}6)

M,y I @™
= —710g(2ﬂ'0') — §;T

o Take derivatives and set to zero:

9= (1/0") Splam — p)
4 M 1
557 = 393+ 551 Lnlm — 1)?
= pmL = (/M) 32, om

oty = (/M) S, a5 — 13y

e At a linear regression node, some parents (covariates/inputs) and
all children (responses/outputs) are continuous valued variables.

o For each child and setting of discrete parents we use the model:
Plylx, 0) = gauss(y]6"x, 0?)

o The likelihood is the familiar “squared error” cost:

U0:D) =~ > (" —0'x")?
20
m
e The ML parameters can be solved for using linear least-squares:
ol
% _ Z(ym - QTXm)Xm
m

= 0 = (X'X)"!'XTY
o Sufficient statistics are input correlation matrix and input-output
cross-correlation vector.

SUFFICIENT STATISTICS

e A statistic is a (possibly vector valued) function of a (set of)

random variable(s).

e T'(X) is a “sufficient statistic” for X if

T(xY =T(x®) =T0d(0;x'y= L(6;x>) Vo

e Equivalently (by the O‘rﬁrnﬂ‘@rinﬁ@heorem) we can write:

p(x|0) = h (x@'(x)) g (T'(x),0)

e Example: exponential family m]o(qsls:

PXIOY e @ T Aln)}
(b)

X T(X)

O—0——0

(c)

MLE ror DIRECTED GMSs

o For a directed GM, the likelihood function has a nice form:
log p(D10) = log [T p(x"¢ry, 05) = 3> log p(x]"|xr;, 6;)
m g m g

e The parameters decouple; so we can maximize likelihood
independently for each node's function by setting 6,.

e Only need the values of x; and its parents in order to estimate 6,.
e Furthermore, if z;, X7, have sufficient statistics only need those.

e In general, for fully observed data if we know how to estimate
params at a single node we can do it for the whole network.

@ ®

SUFFICIENT STATISTICS ARE SUMS

e In the examples above, the
sufficient statistics were merely
sums (counts) of the data:
Bernoulli: # of heads, tails
Multinomial: # of each type
Gaussian: mean, mean-square
Regression: correlations

o As we will see, this is true for all
exponential family models:
sufficient statistics are the
average natural parameters.

e Only* exponential family models
have simple sufficient statistics.

X T(X)]
@

X T(X) 0
(b)

X T(X)]

O—0——0

©

REMINDER: CLASSIFICATION

o Given examples of a discrete class label y and some features x.
e Goal: compute label (y) for new inputs x.

e Two approaches:
Generative: model p(x,y) = p(y)p(x|y);
use Bayes' rule to infer conditional p(y|x).
Discriminative: model discriminants f(y|x) directly and take max.

e Generative approach is related to conditional density estimation
while discriminative approach is closer to regression.

PROBABILISTIC CLASSIFICATION: BAYES CLASSIFIERS

e Generative model: p(x,y) = p(y)p(x|y).
p(y) are called class priors.
p(x|y) are called class conditional feature distributions.

e For the prior we use a Bernoulli or multinomial:
ply = k|m) = mp with 2 7 = 1.
o Classification rules:
ML: argmax, p(x|y) (can behave badly if skewed priors)
MAP: argmax,, p(y[x) = argmax, logp(x|y) +logp(y) (safer)
o Fitting: maximize >, log p(x",y") = >, log p(x"|y") +log p(y")
1) Sort data into batches by class label.
2) Estimate p(y) by counting size of batches (plus regularization).
3) Estimate p(x|y) separately within each batch using ML.
(also with regularization).

GAUSSIAN CLASS-CONDITIONAL DISTRIBUTIONS

o If all features are continuous, a popular choice is a
Gaussian class-conditional.

1
plxly = k.0) = 2] P2 oxp { -3 =)= x -)}

e Fitting: use the following amazing and useful fact.
The maximum likelihood fit of a Gaussian to some data is the
Gaussian whose mean is equal to the data mean and whose
covariance is equal to the sample covariance.

[Try to prove this as an exercise in understanding likelihood, algebra, and calculus all at once!]

e Seems easy. And works amazingly well.
But we can do even better with some simple regularization...

THREE KEY REGULARIZATION IDEAS

e To avoid overfitting, we can put priors on the parameters of the
class and class conditional feature distributions.

e We can also tie some parameters together so that fewer of them
are estimated using more data.

e Finally, we can make factorization or independence assumptions
about the distributions. In particular, for the class conditional
distributions we can assume the features are fully dependent, partly
dependent, or independent (!).

C@O C@?QO

(@ (b) ©

REGULARIZED (GAUSSIANS

e Idea 1: assume all the covariances are the same (tie parameters).
This is exactly Fisher's linear discriminant analysis.

)]
;]
J]
])
] @ i
] i
) |
X X

(@) (b)

e Idea 2: Make independence assumptions to get diagonal or
identity-multiple covariances. (Or sparse inverse covariances.)
More on this in a few minutes...

e Idea 3: add a bit of the identity matrix to each sample covariance.
This “fattens it up” in directions where there wasn't enough data.
Equivalent to using a “"Wishart prior" on the covariance matrix.

GAUSSIAN BAYES CLASSIFIER

o Maximum likelihood estimates for parameters:
priors 7.: use observed frequencies of classes (plus smoothing)
means fi.: use class means
covariance X use data from single class or pooled data
(x"" — pym) to estimate full /diagonal covariances

e Compute the posterior via Bayes' rule:
p(x|ly =k, 0)ply = k|r
> p(xly =3,0)p(y = j|r)
oxp{pp X% — 5 g /2 4 log my)
B > exl){uyTZ*lX — /L}Zfl,uj/Q +logm;}

-
= HX) v = eo{Blx}/Z

where 8, = [y ; (ugz_luk +log 7;.)] and we have augmented
x with a constant component always equal to 1 (bias term).

LINEAR GEOMETRY

e Taking the ratio of any two posteriors (the “odds”) shows that the
contours of equal pairwise probability are linear surfaces in the
feature space:

= k|x,0 T
%:em{wk—@ x}

e The pairwise discrimination contours p(y;.) = p(y;) are orthogonal
to the differences of the means in feature space when ¥ = o1.
For general 3 shared b/w all classes the same is true in the
transformed feature space w = ¥~ !x.

e The priors do not change the geometry, they only shift the
operating point on the logit by the log-odds log(m./7;).

e Thus, for equal class-covariances, we obtain a linear classifier.

o |f we use different covariances, the decision surfaces are conic
sections and we have a quadratic classifier.

SOFTMAX /LOGIT

EXPONENTIAL FAMILY CLASS-CONDITIONALS

e The squashing function is known as the softmax or logit:
ek 1
(z) = . =
O I U

e It is invertible (up to a constant):
2 =loggp+c n=log(g/1—g)

o Derivative is easy:

e Bayes Classifier has the same softmax form whenever the
class-conditional densities are any exponential family density:

p(xly = k,ny) = h(X() Txp{m}fx —) cz(nk)} .
bl) — p(x|ly = k,np)ply = k|7
Py = KBt = S oy = 4.yl = 1)
_oxp{nx — a(mg)}
> jexp{nfx —a(n;)}

e x

Zj eﬂjTX

where ;. = [0 ; —a(n;)] and we have augmented x with a
constant component always equal to 1 (bias term).

o Resulting classifier is linear in the sufficient statistics.

DISCRETE BAYESIAN CLASSIFIER

e If the inputs are discrete (categorical), what should we do?

e The simplest class conditional model is a joint multinomial (table):
plr=a,x2="b,...ly=c) =1y,

e This is conceptually correct, but there's a big practical problem.

e Fitting: ML params are observed counts:

DISCRETE (MULTINOMIAL) NAIVE BAYES

Discrete features x;, assumed independent given the class label 3.

plz; =jly =k) = nj

p(xly = k,n) =

Classification rule:

H H i

Y
0t = Y onlyn = dJ[r1 = aflzo =b][..][.] 1L H 777[?;{: Il
ab... S Tum=d ply = klx,n) = -
; IO T
o Consider the 16x16 digits at 256 gray levels. g allilly uq
e How many entries in the table? How many will be zero? _ Gﬂk
What happens at test time? Doh! $ eﬁqTx ’ O
q
e We obviously need some regularlization. 8, = log] ' - log] Xi X X
Smoothing will not help much here. Unless we know about the K & 771_1k B 'T_lek s Migh - 05Tk @
.) . . . x=[r=Lx1=2;...;0;=7;...;1]
relationships between inputs beforehand, sharing parameters is hard
also. But what about independence?
NAIVE (ID10T’S) BAYES CLASSIFIER FITTING DISCRETE NAIVE BAYES
e Assumption: conditioned on class, attributes are independent. e ML parameters are class—conditional freguency counts:
[i EmV” k]
How d know? Write d the likelihood:
e Sounds crazy right? Right! But it works. ¢ Mow do we Know?: Tirite down the TiKeinoo)
) Tl

e Algorithm: sort data cases into bins according to y,.
Compute marginal probabilities p(y = ¢) using frequencies.

it variable: plx;|ly = c).

o For each class, estimate distribution of ¢
e At test time, compute argmax,. p(c|x) using
¢(3x) = axgmese, plclx) = argmax, [ng(X\ &) +logp(c)]

= argmax,. [logp(c) + Z log p(x;|c)]

D) = Z logp(y"™|m) + Z log p(;™ |y™
m mi

and optimize it by setting its derivative to zero
(carefulI enforce normalization with Lagrange multipliers):

szzm = jlly™ = k| 10?>771]k+z)‘2k

m g5k
ot Yol = jlly™ = K]
Ok ik

ol
—0 ==Y "=
i, " %:[

K]

— Ak

ik

= nz}k = above

Zj Uijk)

GAUSSIAN NAIVE BAYES

e This is just a Gaussian Bayes Classifier with a separate diagonal
covariance matrix for each class.

e Equivalent to fitting a one-dimensional Gaussian to each input for
each possible class.

e Decision surfaces are quadratics, not linear...

LOGISTIC/SOFTMAX REGRESSION

e Model: y is a multinomial random variable whose posterior is the
softmax of linear functions of any feature vector.
T
er X
QT

¥y

e Fitting: now we optimize the conditional likelihood:

(6; D) = " = kllogply = kIx",0) = > " y"log p}l!
mk mk
el opt 0=

E : mazm 39

m

m m Y o

- § : mpk - D) o
E : m m

yk —_— pk 0 02 04 . 06

ply = k|x,0) =

DISCRIMINATIVE MODELS

e Parametrize p(y|x) directly, forget p(x,y) and Bayes' rule.

e As long as p(y|x) or discriminants f(y|x) are linear functions of x

(or monotone transforms), decision surfaces will be piecewise linear.

e Don’t need to model the density of the features.
Some density models have lots of parameters.
Many densities give same linear classifier.

But we cannot generate new labeled data.

o Optimize a cost function closer to the one we use at test time.

%

MORE ON LOGISTIC REGRESSION

e Hardest Part: picking the feature vector x.

e Amazing fact: the conditional likelihood is (almost) convex in the
parameters 6. Still no local minima!

e Gradient is easy to compute; so easy (if slow) to optimize using
gradient descent or Newton-Raphson / IRLS.

e Why almost? Consider what happens if there are two features with
identical classification patterns in our training data. Logistic
Regression can only see the sum of the corresponding weights.

e Solution? Weight decay: add € 62 to the cost function, which
subtracts 2¢6 from each gradient.

e Why is this method called logistic regression?
e It should really be called “softmax linear regression”.

e Log odds (logit) between any two classes is linear in parameters.

Noisy-OR CLASSIFIER LEARNING MARKOV MODELS

e Many probabilistic models can be obtained as noisy versions of e The ML parameter estimates for a simple Markov model are easy:
formulas from propositional logic. T
e Noisy-OR: each input z; activates output y w/some probability. P12, ¥7) = PY1--- Vi) 1;[Pyelye—1,yi-2:- - Y1)
t=k+1
— — L . . .
ply =0x,) = H a; = exp Zl’z log a; logp({y}) =logp(y1.-.yi) + D logp(yilyi—1,¥1-2: -+ Yi-k)
7 7 t:k+1
e Letting 6, = — log a;; we get yet another linear classifier: e Each window of k + 1 outputs is a training case for the model

HTX p(Yt‘Yt—h Yt—2,... 7Yt—k>'
e Example: for discrete outputs (symbols) and a 2nd-order markov
model we can use the multinomial model:

plyt = mlyi—1 = a,y4—2 = b) = ayqp
The maximum likelihood values for o are:
N num(t s.t. y¢ =m,y;—1 = a,yy—o = b
mab —

ply=1x,0)=1—e"

num(t s.t. g1 = a,y;_9 = b

CHAINS: MARKOV MODELS MAXIMUM ENTROPY MARKOV MODELS
e If variables have some temporal /spatial order, we can model their e We can extend this idea to a “logistic regression through time”
joint distribution as a dynamical/diffusion system. type of conditional model called a maximum entropy markov model.

e Simple idea: next output depends only on k previous outputs: Q @ @ cee @
vt = flyt—1,¥t-2, - Yt 4]

k is called the order of the Markov Model
e The joint distribution is now a conditional model:

p(stlat) = [[p(stlsi—1, fila]))
t

e Add noise to make the system probabilistic: o The features f; can be very nonlocal functions of the underlying
input sequence, for example they can consult things in the past and

P(Yelyt—1,¥t—2, -, Y1) in the future.

CONDITIONAL RANDOM FIELDS

S (S S een

How is this different than the MEMM?
Normalization is global and not local.

What are the cliques in this model?

UNDIRECTED TREE GRAPHICAL MODELS

e Undirected trees are connected, acyclic graphs with exactly (D-1)
edges if there are D nodes (variables).

o For undirected trees, the cliques are all pairs of connected nodes.
1
=7 H Vil Xr;)
1

where we can make Z = 1 with the choice 1); = p(x;|xr;) except
for one clique involving the root: ¢ = p(x;)p(z|xx;)

e Trees have no “explaining-away” (converging arrows).
Therefore, d-separation and regular separation are equivalent.

e Directed and undirected trees are equivalent and the choice of root
is arbitrary (for fully observed models).

e Another characterization of trees: there is exactly one path between
any pair of nodes (without doubling back).

DIRECTED TREE GRAPHICAL MODELS

o Directed trees are DAGMs in which each variable x; has exactly one
other variable as its parent X, except the “root” Zy,ot which has
no parents. Thus, the probability of a variable taking on a certain
value depends only on the value of its parent:

p(X) :p(xroot) H p(33i|x7r,;)

1100t
o Trees are the next step up from assuming independence.
Instead of considering variables in isolation, consider them in pairs.

NB: each node (except root) has CD\\ / .y
exactly one parent, but nodes ,/Qz\’@ '

may have more than one child. O\»@XG‘"

LIKELIHOOD FUNCTION

o Notation:
yi = a node x; and its single parent xr,.
V; = set of joint configurations of node i and its parent X,
(Y100t = Zroot and Vgt = Vioot)

o Directed model likelihood:

= Zlogp(xn) = Z log pr(zy) + 210829 g ‘Xﬂ—z)

n i#r
- ZZ Z v]log p;(v) indicator trick
it veV;
= Z > Ni(v)logpi(v)
1 veV;

where Ny(v) = 3, [y = v] and p;(vi) = p(rfxr,).
e Trees are in the exponential family with y; as sufficient statistics.

MaxiMUM LIKELIHOOD PARAMETERS GIVEN STRUCTURE

e Trees are just a special case of fully observed graphical models.

e For discrete data x; with values v;, each node stores a conditional
probability table (CPT) over its values given its parent's value.
The ML parameter estimates are just the empirical histograms of
each node's values given its parent:

P (@ = vi|xg; = vj) = N = vioxm = vj) _ Nilyi)

L J Zv,; N(z; = vj, Xz, = v;) Nm(vj)

except for the root which uses marginal counts N;.(v,)/N.

e For continuous data, the most common model is a two-dimensional
Gaussian at each node. The ML parameters are just to set the
mean of p;(y;) to be the sample mean of [z;; x| and the
covariance matrix to the sample covariance.

e In practice we should use some kind of smoothing/regularization.

OPTIMAL STRUCTURE

o Let us rewrite the likelihood function:

0(6:D) = Y N(x)logp(x)

XEVan
= Z N(x) | logp(x,) + Z log p(zi[xx,)
b'e i#r
e ML parameters, are equal to the observed frequency counts ¢(-):
g*
N 3 alx) (loga(x,) + Y logglailxs,)

xEVy i

=Y ax) | logg(x,) + Y log I“X;'

i#r
fz Z ’XT’ Zq x) > logg(x:)

o NB: second term does not depend on structure.

STRUCTURE LEARNING

EDGE WEIGHTS

e What about the tree structure (links)?
How do we know which nodes to make parents of which?

CQ\ %

e Bold idea: how can we also /earn the optimal structure?
In principle, we could search all combinatorial structures, for each
compute the ML parameters, and take the best one.

e But is there a better way? Yes. It turns out that structure learning
in tree models can be converted to a good old computer science
problem: maximum weight spanning tree.

e Each term insum ¢ # r corresponds to an edge from ¢ to its parent.
s xj, X~r,
N g Z log + C
(FUXW,)
= Ti, Xn;) l()g—‘ +C
=22 q(x:)q(xr,)

AT T Xr;

=S Y atvos X e
=5 1()

= ZI/V (i;m) +C
i#r

where the edge weights W are defined by mutual information:

qlzi, x)
qumx] log(=

= 2)a(z;)

e So overall likelihood is sum of weights on edges that we use.
We need the maximum weight spanning tree.

KRUSKAL’S ALGORITHM (GREEDY SEARCH)

e To find the maximum weight spanning tree A on a graph with
nodes U and weighted edges £
1. A «— empty
2. Sort edges E by nonincreasing weight: eq,¢9,...,¢ex.
3.for k=1to K {A +=ej, unless doing so creates a cycle}

NOTES

e Any directed tree consistent with the undirected tree found by the
algorithm above will assign the same likelihood to any dataset.

e Amazingly, as far as likelihood goes, the root is arbitrary.
We can just pick one node and orient the edges away from it.
Or we can work with undirected models.

e For continuous nodes (e.g. Gaussian), the situation is similar,
except that computing the mutual information requires an integral.

e Mutual information is the Kullback-Leibler divergence
(cross-entropy) between a distribution and the product of its

marginals. Measures how far from independent the joint
distribution is.

W(i; 7) = lay; 2] = KL[g(zy, 2j) || q(z;)q(;)]

MAXIMUM LIKELIHOOD TREES

We can now completely solve the tree learning problem:

1. Compute the marginal counts ¢(z;) for each node
and pairwise counts ¢(z;, xj) for all pairs of nodes.

2. Set the weights to the mutual informations:
(xw .%'])
qul,x] log ———— @)
T, T
3. Find the maximum weight spanning tree A=MWST (/).

4. Using the undirected tree A chosen by MWST, pick a root
arbitrarily and orient the edges away from the root.
Set the conditional functions to the observed frequencies:

Q(.%'i,Xﬂ-i) _ Q(‘xiaxﬂi)

p(372'|x7h') N sz‘ Q(‘TZVXW) q(Xﬂi)

LECTURE 3:

LATENT VARIABLES MODELS AND
LEARNING WITH THE EM ALGORITHM

Sam Roweis

Thursday January 27, 2005
Machine Learning Summer School

UNOBSERVED VARIABLES

e We have been assuming that we observe all the random variables in
our model at training time, and all the “inputs” at test time.

e But certain variables () in our models may be unobserved,
either some of the time or always,
either at training time or at test time.

299%¢

(Graphically, we will use shading to indicate observation.)

FUNDAMENTAL OPERATIONS

e What can we do with a probabilistic graphical model?

e Generate new data.
For this you need to know how to sample from local models
(directed) or how to do Gibbs or other sampling (undirected).

e Novelty/outlier detection.
When all nodes are either observed or marginalized the result is a
single number which is the log prob of the configuration.

e Parameter Learning from Examples.
Set the parameters of the local functions given some (partially)
observed data to maximize the probability of seeing that data.

o Inference of Internal/Hidden Variables.
Compute expectations of some nodes given others which are
observed or marginalized.

PARTIALLY UNOBSERVED (MISSING) VARIABLES

o |f variables are occasionally unobserved they are missing data.
e.g. undefinied inputs, missing class labels, erroneous target values

e In this case, we can still model the joint distribution, but we define
a new cost function in which we sum out or marginalize the missing
values at training or test time:

(6:D) = Y logp(xyole)+ > logp(x™|0)

complete missing
=) logpxSylo)+ > 10g2p ", yl6)
complete missing

[Recall that p(z) = >, p(z. q).]

LATENT VARIABLES

e What to do when a variable z is always unobserved?
Depends on where it appears in our model. If we never condition on
it when computing the probability of the variables we do observe,
then we can just forget about it and integrate it out.
e.g. given y, x fit the model p(z,y|x) = p(z|y)p(y|x, w)p(w).
(In other words if it is a leaf node.)

e But if z is conditioned on, we need to model it:
e.g. given y, x fit the model p(y|x) = >, p(y|x,z)p(z)

z

CLUSTERING VS. CLASSIFICATION
LATENT FACTOR MODELS VS. REGRESSION

e You can think of clustering as the problem of classification
with missing class labels.

o: -.o z ..9" °
o °® o.
o

° ... o '.:
. [T oo
o ® Cee

. .' :o. :; .
o0
X S

e You can think of factor models (such as factor analysis, PCA, ICA,
etc.) as linear or nonlinear regression with missing inputs.

WHERE Do LATENT VARIABLES COME FrROM?

e Latent variables may appear naturally, from the structure of the
problem, because something wasn't measured, because of faulty
sensors, occlusion, privacy, etc.

e But also, we may want to intentionally introduce latent variables to
model complex dependencies between variables without looking at
the dependencies between them directly.

This can actually simplify the model (e.g. mixtures).

Zy

@ (b)

WHY 1S LEARNING HARDER?

o In fully observed iid settings, the probability model is a product
thus the log likelihood is a sum where terms decouple.
(At least for directed models.)

£(0: D) = log p(x, z|0)
= logp(z]0.) + log p(x|z, 0)

e With latent variables, the probability already contains a sum, so the
log likelihood has all parameters coupled together via log > ():

00;D) = logZp(x, z|0)
= 10g2p(z|9z)p(x|z, 0z)

(Just as with the partition function in undirected models.)

LEARNING WITH LATENT VARIABLES

o Likelihood ¢(68; D) =log >, p(z|0.)p(x|z, 6;) couples parameters:
z

z

© 0 ® o

Xy Xz X3 Xi X2 X3

() (b)

e We can treat this as a black box probability function and just try to
optimize the likelihood as a function of 0 (e.g. gradient descent).
However, sometimes taking advantage of the latent variable
structure can make parameter estimation easier.

e Good news: soon we will see the EM algorithm which allows us to
treat learning with latent variables using fully observed tools.

o Basic trick: guess the values you don't know.
Basic math: use convexity to lower bound the likelihood.

MIXTURE DENSITIES

e Exactly like a classification model but the class is unobserved and
so we sum it out. What we get is a perfectly valid density:
K

p(x]0) = Zp z = kl|0,)p(x|z = k,0})
= Z%pk(XWk)
k

where the “mixing proportions” add to one:), o = 1.

e We can use Bayes’ rule to compute the posterior probability of the
mixture component given some data:
Q@ x|60
(Z _ k‘|X 9) kpk(’ k)
Z] QD5 X‘e)

these quantities are called responsibilities.

MIXTURE MODELS (1 DISCRETE LATENT VAR)

e Most basic latent variable model with a single discrete node z.
e Allows different submodels (experts) to contribute to the
(conditional) density model in different parts of the space.

e Divide and conquer idea: use simple parts to build complex models.
(e.g. multimodal densities, or piecewise-linear regressions).

Xo

(b) iz
lW

CLUSTERING EXAMPLE: GAUSSIAN MIXTURE MODELS

e Consider a mixture of K Gaussian components:

p(x|0) = Z RN (x| e, 2)

_ OékN(X!Mk72k)
> QN (x|, Si)

D)= log) apN(x"|u,)
nk
()

e Density model: p(z|f) is a familiarity signal.
Clustering: p(z|x, @) is the assignment rule, —¢(0) is the cost.

REGRESSION EXAMPLE: MIXTURES OF EXPERTS

e Also called conditional mixtures. Exactly like a class-conditional
model but the class is unobserved and so we sum it out again:

K
p(Y‘X) H) - Zp(z = k‘X, Qz)p(y\z - k7X7 ek)
k=1

=) ap(x[0:)pi(ylx, 0;)
where Y " ap(x) =1 Vx.
e Harder: must learn «(x) (unless chose z independent of x).

e We can still use Bayes' rule to compute the posterior probability of
the mixture component given some data:

~ klx o (X)p(y|x, 0x)
ple = kY0 = S o omi %, 6)

this function is often called the gating function.

GRADIENT LEARNING WITH MIXTURES

e We can learn mixture densities using gradient descent on the
likelihood as usual. The gradients are quite interesting:

00) = logp(x|6) = log Y _ cpy(x|6y,)

k
a1 Opy,(x|0k)
90 (X\@)Zak 0

dlog pi.(x|0
Z k pk (x]0).)M
|9
a Pr(x[0r) 0
Z p(x[0) 96y, Z “k kae

e In other words, the gradient is the responsibility weighted sum of
the individual log likelihood gradients.

EXAMPLE: MIXTURE OF LINEAR REGRESSION EXPERTS

e Each expert generates data according to a linear function of the
input plus additive Gaussian noise:

plylx,) Zak Nyl B, o7)

e The “gate” function can be a softmax classification machine:

-
el *

J

e Remember: we are not modeling the density of the inputs x.

aj(x) = p(z = klx) =

Xa
y

REMINDER: LEARNING WITH LATENT VARIABLES

e With latent variables, the probability contains a sum, so the log
likelihood has all parameters coupled together:

D) = logZp(x, z|0) = log Zp(z\&z)p(x\z, 0z)

(we can also consider continuous z and replace) with [)

e If the latent variables were observed, parameters would decouple
again and learning would be easy:

((0; D) = log p(x,2|0) = log p(z02) + log p(x|z, 0)
e One idea: ignore this fact, compute 9¢/00, and do learning with a
smart optimizer like conjugate gradient.

e Another idea: what if we use our current parameters to guess the
values of the latent variables, and then do fully-observed learning?
This back-and-forth trick might make optimization easier.

EXPECTATION-MAXIMIZATION (EM) ALGORITHM

ExXPECTED COMPLETE LOG LIKELIHOOD

o |terative algorithm with two linked steps:
E-step: fill in values of z’ using p(z|x, 8).
M-step: update parameters using 077! — argmax £(0;x, z").

e E-step involves inference, which we need to do at runtime anyway.

M-step is no harder than in fully observed case.

o We will prove that this procedure monotonically improves ¢
(or leaves it unchanged). Thus it always converges to a local
optimum of the likelihood (as any optimizer should).

e Note: EM is an optimization strategy for objective functions that
can be interpreted as likelihoods in the presence of missing data.

e EM is not a cost function such as “maximum-likelihood” .
EM is not a model such as “mixture-of-Gaussians” .

e For any distribution ¢(z) define expected complete log likelihood:

(g(0;%) = (Le(0:%,2))g =) q(z[x) log p(x, 2|0)
z
o Amazing fact: £(0) > (4(0) + H(q) because of concavity of log

((6;x) = log p(x|0)

=log»_p(x,z|0)

= log Z Q(z\x)p—<x’ zIf) /

q(Z!X) /
>Zq z|x) log px, |ZX|)9)

o Where the inequality is called Jensen's inequality.
(It is only true for distributions: > ¢(z) = 1; ¢(z) > 0.)

COMPLETE & INCOMPLETE LOG LIKELIHOODS

LOWER BOUNDS AND FREE ENERGY

o Observed variables x, latent variables z, parameters 6:
le(0;x,2) = log p(x, z|0)
is the complete log likelihood.

e Usually optimizing ¢.(6) given both z and x is straightforward.
(e.g. class conditional Gaussian fitting, linear regression)

e With z unobserved, we need the log of a marginal probability:

0(0;x) = log p(x]0) = log Zp x,z|0)

which is the incomplete log likelihood.

e For fixed data x, define a functional called the free energy:

= S qtebol Xfx'f) 0

e The EM algorithm is coordinate-ascent on F':

E-step: gt = argmax, F(q, 6)
M-step: 0l = argmaxy F(¢'t1,0%)
(=4

Flae)

QU

M-STEP: MAXIMIZATION OF EXPECTED /.

o Note that the free energy breaks into two terms:

Zq z|x) log x, z[6)

(z[x)
—Zq z|x) 10gpx z|0) — Zq z[x) log ¢(z[x)
= gq(&,x) +H(q)

(this is where its name comes from)

e The first term is the expected complete log likelihood (energy) and
the second term, which does not depend on 6, is the entropy.

e Thus, in the M-step, maximizing with respect to 6 for fixed ¢ we
only need to consider the first term:

6t+1 = argmaxy Eq(9~ X) = argmaxy Z Q(Z|X) 10gp<X, Z|0)

V4

EM CONSTRUCTS SEQUENTIAL CONVEX LOWER BOUNDS

o Consider the likelihood function and the function F(¢/*1,).
likelihood

A

\

E-STEP: INFERRING LATENT POSTERIOR

e Claim: the optimim setting of ¢ in the E-step is:
t+1 t
q = p(z‘x7 0)
e This is the posterior distribution over the latent variables given the

data and the parameters. Often we need this at test time anyway
(e.g. to perform classification).

e Proof (easy): this setting saturates the bound ¢(6;x) > F(q,0)

. gt f p(x,z|0")
F(p(z|x,6),0") Zp z|x,0") log (2,)

= Zp z[x, 0") logp(XIHt)
Z

= log p(x[6") 3, p(z[x,6")

=/(0;x)-1

e Can also show this result using variational calculus or the fact that
{(0) — F(q,0) = KLg||p(z|x, 0)]

EXAMPLE: MIXTURES OF (GAUSSIANS

® Recall: a mixture of K Gaussians:
p(xl6) = %y g N (clag.)
00;D) =3, log > apN (X" g, X
e Learning with EM algorithm:

E — step : Pl = N (X", 20)
1 t ZP}L}
qﬁl =plz=k|x",6") = ”
Z]]pkn
t+1 x"
. t+1 _ ank‘n
M —step: pu.' = SN ~
nf kifl t+1 t+1
+ + -+
S ankn (— My)(x" - Mg)T
ko Z t+1
X n9n
t+1 _ t+1
YU TN . T

EM ror MOG COMPARE: K-MEANS
. L=1 " L=4 . e The EM algorithm for mixtures of Gaussians is just like a soft
Q o ﬂ @ version of the K-means algorithm.
o O /) % o In the K-means “E-step” we do hard assignment:
: : I = argming, (x" — ,u};)Tlel(xn —ub)
@) © @ © e In the K-means “M-step” we update the means as the weighted
L=6 .. L=8 el L=10 L=12 sum of the data, but now the weights are 0 or 1:
e . oo . t 1
@_ Q '3 '3 = Ynle = nlx"
o k Al
P & & EaleT =
G) C) (h) 0]
@) () © : (d (e) ®
DERIVATION OF M-STEP VARIANTS

o Expected complete log likelihood ¢4(0; D):
1 1y Ty—1 I
SN i [logak — SO =) T =) = S log IQWZM]
nok
e For fixed ¢ we can optimize the parameters:
(%
R WM

86(1 Z U [Ek x" — f—i—l)(N};—H)T}

aTk—a—kzn:an—)‘ ()‘—M>

dlog|A~1 T dx | A T
6A|—1 | — AT and i = XX

o Fact:

e Sparse EM:

Do not recompute exactly the posterior probability on each data
point under all models, because it is almost zero.

Instead keep an “active list” which you update every once in a
while.

o Generalized (Incomplete) EM: It might be hard to find the ML
parameters in the M-step, even given the completed data. We can
still make progress by doing an M-step that improves the likelihood
a bit (e.g. gradient step).

REcAP: EM ALGORITHM

e A way of maximizing likelihood function for latent variable models.
Finds ML parameters when the original (hard) problem can be
broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed
data and current parameters.

2. Using this “complete” data, find the maximum likelihood
parameter estimates.

e Alternate between filling in the latent variables using our best guess
(posterior) and updating the paramters based on this guess:
E-step: ¢/ = p(z|x, 6"

M-step: 17! = argmaxy 3, q(z|x) log p(x, z|6)

o In the M-step we optimize a lower bound on the likelihood.

In the E-step we close the gap, making bound=likelihood.

CONTINUOUS LATENT VARIABLES

e In many models there are some underlying causes of the data.
e Mixture models use a discrete class variable: clustering.

e Sometimes, it is more appropriate to think in terms of continuous
factors which control the data we observe. Geometrically, this is
equivalent to thinking of a data manifold or subspace.

N =

y2
yt

e To generate data, first generate a point within the manifold then
add noise. Coordinates of point are components of latent variable.

BE CAREFUL: LOGSUM

FACTOR ANALYSIS

e Often you can easily compute b, = logp(x|z = k, 6;.),
but it will be very negative, say -10° or smaller.
e Now, to compute ¢ = log p(x|#) you need to compute log > ;. elk.

o Careful! Do not compute this by doing log(sum(exp(b))).
You will get underflow and an incorrect answer.

e Instead do this:

—Add a constant exponent B to all the values b;. such that the
largest value comes close to the maxiumum exponent allowed by
machine precision: B = MAXEXPONENT-1log(K)-max (b).

— Compute log(sum(exp(b+B)))-B.

e Example: if logp(z|z = 1) = —420 and log p(z|z = 2) = —420,

what is log p(z) = log [p(z|z = 1) + p(x|z = 2)]?

Answer: log[2e ™42V = —420 + log 2.

e When we assume that the
subspace is linear and that the
underlying latent variable has a
Gaussian distribution we get a
model known as factor analysis:
— data y (p-dim);

— latent variable x (k-dim)

p(x) = N(x[0, 1)
plylx,0) = N(ylp+ Ax, V)
where 11 is the mean vector, A is the p by k factor loading matrix, and
U is the sensor noise covariance (ususally diagonal).
e Important: since the product of Gaussians is still Gaussian, the joint
distribution p(x,y), the other marginal p(y) and the conditional
p(x|y) are also Gaussian.

MARGINAL DATA DISTRIBUTION

e Just as with discrete latent variables, we can compute the marginal
density p(y|€) by summing out x. But now the sum is an integral:

p(y]0) = / p(x)p(y %, 0)dx = N(ylpr, AAT+)

which can be done by completing the square in the exponent.
e However, since the marginal is Gaussian, we can also just compute
its mean and covariance. (Assume noise uncorrelated with data.)
Ely] = Elu + Ax + noise] = p+ AE[x] + E[noise]
=pu+A-0+0=pn
Covly] = Elly — p)(y —)]

= E[(p + Ax + noise — p)(p + Ax + noise —)]
= E[(Ax+n)(Ax +n)'] = AE(xx")A" + E(nn")
=A\T+ U

LIKELIHOOD FUNCTION

e Since the FA data model is Gaussian, likelihood function is simple:
N 1
00:D) = = log AT+ 0] = 5 3 (y" =) T(AAT +0)7H(y" — 1)

N

n
- 1 . —1 n n T
= —?bg V] — étIdCG [V ;(y —w)(y" = p)

N 1
= —?Iog V]| — étrace [V_ls]

V is model covariance; S is sample data covariance.

e In other words, we are trying to make the constrained model
covariance as close as possible to the observed covariance, where
“close” means the trace of the ratio.

e Thus, the sufficient statistics are the same as for the Gaussian:
mean Y, y" and covariance Y, (y" — u)(y" — p) "

FA = CONSTRAINED COVARIANCE (GAUSSIAN

e Marginal density for factor analysis (y is p-dim, x is k-dim):
p(y10) = N(ylp, AN +0)

e So the effective covariance is the low-rank outer product of two
long skinny matrices plus a diagonal matrix:

N
Cov[y] | = -+ ¥

o In other words, factor analysis is just a constrained Gaussian model.

(If U were not diagonal then we could model any Gaussian and it
would be pointless.)

e Learning: how should we fit the ML parameters?

e |t is easy to find p: just take the mean of the data.
From now on assume we have done this and re-centred y.

o What about the other parameters?

EM ror FACTOR ANALYSIS

o We will do maximum likelihood learning using

(surprise, surprise) the EM algorithm.

E-step: ¢, = p(x"|y",¢")

M-step: 017! = argmaxy >onfx ¢ H(x"y™) log p(y™, x"|0)dx"
e For E-step we need the conditional distribution (inference)

For M-step we need the expected log of the complete data.

E — step : qfﬂfl = p(x"|y", Qt) =N (x"m", V")
M —step : A" = argmaxy Y (be(x", y") 1
n

U = argmaxy Z (0o(x", yn)>q2+1
n

INFERENCE IS LINEAR

e Note: inference just multiplies y by a matrix:
p(x]y) = N(x|m, V)
V=I—-A(AA" +0)7IA
— (I+ATO)7t
m=A (AT +)"y — p)
= VAU (y — p)
e Note: inference of the posterior mean is just a linear operation!

m = Sy — p)

where 3 can be computed beforehand given the model parameters.

e Also: posterior covariance does not depend on observed data!
covx|y] =V = (I + ATO 1A~

PrINCIPAL COMPONENT ANALYSIS

e In Factor Analysis, we can write the marginal density explicitly:
plyld) = /p(X)p(ylx, 0)dx = N(y|p, AN +T)
X

e Noise W mut be restricted for model to be interesting. (Why?)

e In Factor Analysis the restriction is that W is diagonal (axis-aligned).
o What if we further restrict U = o°1 (ie spherical)?

e We get the Probabilistic Principal Component Analysis (PPCA)

model:
p(x) = N(x[0, 1)
plylx,0) = N(ylu + Ax,0°T)
where 1 is the mean vector,

columns of A are the principal components (usually orthogonal),
and o2 is the global sensor noise.

FiNAL ALGORITHM: EM FOR FACTOR ANALYSIS

o First, set 1 equal to the sample mean (1/N) ", yp, and subtract
this mean from all the data.

e Now run the following iterations:
E —step : ¢'" = p(x|y,6") = N (x"|m", V")
V= (I+ AT IA)7!
m" = VnAT\I]—l(y _ N)

-1
M — step : At—H _ (Z ynmnT> <Z Vn>
n

n

1 ,
\Ijt—i-l _ Ndiag [Z ynynT + At—i—l Z mnynT]
n n

PCA: ZErRO NOISE LIMIT

e The traditional PCA model is actually a limit as o2 — 0.
The model we saw is actually called “probabilistic PCA”.

e However, the ML parameters A* are the same.
The only difference is the global sensor noise o2

e In the zero noise limit inference is easier: orthogonal projection.

im + o)t = -
lim AT(AAT +621) 7 = (ATA)TIAT

02—0

DIrRECT FITTING

e For FA the parameters are coupled in a way that makes it
impossible to solve for the ML params directly.
We must use EM or other nonlinear optimization techniques.

e But for (P)PCA, the ML params can be solved for directly:
The k' column of A is the k'" largest eigenvalue of the sample
covariance S times the associated eigenvector.

e The global sensor noise o is the sum of all the eigenvalues smaller
than the k" one.

e This technique is good for initializing FA also.

o Actually PCA is the limit as the ratio of the noise variance on the
output to the prior variance on the latent variables goes to zero.
We can either achieve this with zero noise or with infinite variance
priors.

SCALE INVARIANCE IN FACTOR ANALYSIS

e In FA the scale of the data is unimportant: we can multiply y; by
a; without changing anything:

i = Qfl
Nij —aj\jj Y
U; — oV,
o However, the rotation of the data is important.

o FA looks for directions of large correlation in the data, so it is not
fooled by large variance noise.

(GAUSSIANS ARE FOOTBALLS IN HIGH-D

o Recall the intuition that Gaussians are hyperellipsoids.

e Mean == centre of football
Eigenvectors of covariance matrix == axes of football
Eigenvalues == lengths of axes

e In FA our football is an axis aligned cigar.
In PPCA our football is a sphere of radius o2.

FA - PCA
W L gl

ROTATIONAL INVARIANCE IN PCA

e In PCA the rotation of the data is unimportant: we can multiply
the data y by and rotation Q without changing anything:

p— Qpu

A — QA

¥ «— unchanged
o However, the scale of the data is important.

e PCA looks for directions of large variance, so it will chase big noise
directions.

HiDDEN MARKOV MODELS (HMMS)

Add a latent (hidden) variable z; to improve the model.
e HMM = “ probabilistic function of a Markov chain”:
1. 1st-order Markov chain generates hidden state sequence (path):
Parr =jloe =)= Si; Plez1=j) =

2. A set of output probability distributions A;(-) (one per state)
converts state path into sequence of observable symbols/vectors

Pyt = yloe = j) = A;(y)

T

e Even though hidden state seq. is 1st-order Markov, the output
process is not Markov of any order [ex.
1111121111311121111131. . .]

(state transition diagram)

HMM GRAPHICAL MODEL

X1 KXZ\ /Xg\ (X X)) X7

e Hidden states {x;}, outputs {y¢}
Joint probability factorizes:

T
P({x},{y}) = II P(ztlx¢—1)P(yt|¢)

t=1
T—1 T
= Tx H Spapa H Az, (yt)
t=1 t=1

e NB: Data are not i.i.d.
There is no easy way to use plates to show this model. (Why?)

APPLICATIONS OF HMMSs

e Speech recognition.

e Language modeling.

o Information retrieval.

e Motion video analysis/tracking.

e Protein sequence and genetic sequence alignment and analysis.
e Financial time series prediction.

Links TO OTHER MODELS

e You can think of an HMM as:
A Markov chain with stochastic measurements.

O-0—0——0

P

A mixture model with states coupled across time.

e The future is independent of the past given the present.
However, conditioning on all the observations couples hidden states.

LECTURE 4:

INFERENCE IN CHAINS AND TREES,
MESSAGE PASSING, BELIEF PROPAGATION

Sam Roweis

Friday January 28, 2005
Machine Learning Summer School

SIMPLE CASE: BAYES RULE

e For simple models, we can derive the inference formulas by hand
using Bayes rule (e.g. responsibility in mixture models).

X X X a) p(z,y) = p(x)p(y|z)

)
O O Y@ . p(@)p(ylz)
) Pl =)

@) ©

This is called “reversing the arrow”.
e In general, the calculation we want to do is:

> xp P(XE,Xp,XR)
> oxpxpP(XE: X, XR)
e Q: Can we do these sums efficiently?

Can we avoid repeating unecessary work each time we do inference?
A: Yes, if we exploit the factorization of the joint distribution.

p(xplxg) =

PROBABILISTIC INFERENCE

e Partition the random variables in a domain X into three disjoint
subsets, xp,xp,XR. The general probabilistic inference problem is
to compute the posterior p(xp|xg) over query nodes X .

e This involves conditioning on evidence nodes X and
integrating (summing) out marginal nodes x .

e If the joint distribution is represented as a huge table, this is trivial:

just select the appropriate indicies in the columns corresponding to
X, based on the values, sum over the columns corresponding to
X, and renormalize the resulting table over x .

o If the joint is a known continuous function this can sometimes be
done analytically. (e.g. Gaussian: eliminate rows/cols
corresponding to X p; apply conditioning formulas for p(xp|xg)).

e But what if the joint distribution over X is represented by a
directed or undirected graphical model?

ExXAMPLE
Xa
Xz The key is to factor and then apply the distributive law.
XB — — -
6< p(x1/Xq) = p(x1,%5)/p(Xs)
~ = p(x1,%g)/ ZP(X1/7 X6)
x1’

Xs

p(x1, %) Z Z Z ZP (x1)p(x2[x1)p(x3%1)p(x4]x2)p(X5|%3)p (X6 | %2, X5)

X3 X3 X4 X
= p(x1 Zp X2[x1) Zp X3[x1) Zp X4[x2) ZP X5/%3)p(Xg[x2, X5)
= p(x1) Zp (x2|x1) Zp (x3]x1) P5(x2, X3) Zp (x4]x2)

p(xy ZP X2[x1) (I’4 X2 ZP X3]x1)P5(x2, X3)
= p(x1 ZP X2|X1)(1>4(X2>‘1)3(X17X2)

X2

= p(x1)Pa(x1)

SINGLE NODE POSTERIORS

e For a single node posterior (i.e. X is a single node), there is a
simple, efficient algorithm based on eliminating nodes.

e Notation: z; is the value of evidence node ;.

e The algorithm, called elimination, requires a node ordering to be
given, which tells it which order to do the summations in.

e In this ordering, the query node must appear last.
Graphically, we'll remove a node from the graph once we sum it out.

@ 0] © @ @ o ©

ELIMINATION ALGORITHM

ELIMINATE(G, E, F)
INITIALIZE(G. F)
EVIDENCE(E)
UPDATE(G)
NORMALIZE(F)

INITIALIZE(G, F)
choose an ordering I such that F appears last
for each node X; in V
place p(z; | zz,) on the active list
end
EVIDENCE(E)
for each i in F/

place §(z;, ;) on the active list
end

UPDATE(G)
for each i in I
find all potentials from the active list that reference z; and remove them from the active list
let ¢;(x7;) denote the product of these potentials
let mi(zs,) = 32, di(zr,)
place m;(zs;) on the active list
end
NORMALIZE(F)

p(zr|zr) < pr(zr)) 3, ¢r(er)

The ELIMINATE algorithm for probabilistic inference on directed graphs.

Above, T; denotes ¢ plus all other nodes referenced by potentials on ¢

EVIDENCE POTENTIALS

e Elimination also uses a bookeeping trick, called evidential functions:
9(x:) =Y glw)d(w, 7;)
T

where §(x;, Z;) is 1 if x; = Z; and 0 otherwise.
e This trick allows us to treat conditioning in the same way as we
treat marginalization. So everything boils down to doing sums:
p(xplxp) = p(xp,.xp)/p(Xp)
pxp.Xp) =Y p(xp.Xp Xp)d(Xp,Xp)

XR XE

p(xE)=>_> > pxp,xp Xp)é(xp, Xp)

XR Xp Xp

e We just pick an ordering and go for it...

ALGORITHM DETAILS

e At each step we are trying to remove the current variable in the
elimination ordering from the distribution.
For marginal nodes this sums them out, for evidence nodes this
conditions on their observed values using the evidential functions.

e Each step in UPDATE performs a sum over a product of potential
functions. Potentials can be original functions p(z;|xy;), evidential
functions d(x;, Z;) or intermediate potentials m;.

e The algorithm terminates when we reach the query node,
which always appears last in the ordering.

e We renormalize what we have left to get the final result:
p(xplxp)
e For undirected models, everything is the same except the

initialization phase uses the clique potentials instead of the
parent-conditionals.

MARGINALIZATION WITHOUT EVIDENCE

e Marginalization of joint distributions represented by graphical
models is a special case of probabilistic inference.

e To compute the marginal p(z;) of a single node, we set it to be the

query node and set the evidence set to be empty.

e In directed models, we can ignore all nodes downstream from the
query node, and marginalize only the part of the graph before it.

o If the node has no parents, we can read off its marginal directly.

o In undirected models, we need to do the full computation:
compute p(x;)/Z using elmination and then normalize in the last
step of elmination to get Z.

(We can reuse Z later if we want to save work).

NoODE ELIMINATION

e The algorithm we presented is really a way of eliminating nodes
from a graph one by one. For undirected graphs:

foreach node z; in ordering I[:
connect all the neighbours of x;
remove z; from the graph

end

e The removal operation requires summing out x;
(or conditioning on observed evidence for z;).

e Summing out x; leaves a function involving all its previous
neighbours and thus they become connected by this step.

e The original graph, augmented by all the added edges is now a

triangulated graph. (Reminder: triangulated means that every cycle

of length >3 contains a chord, ie an edge not on the cycle but
between two nodes in the cycle.)

EFrFICIENCY TRICK IN DIRECTED ELIMINATION

o |In directed models, we often know that a certain sum must
evaluate to unity, since it is a conditional probability.

e For example, consider the term ®4(x9) in our six node example:

Dy(xp) = Y plxalxg) =1

o We can't use this trick in undirected models, because there are no
guarantees about what clique potentials sum to.

EXAMPLE
Xa Xa Xa
X2 Xz Xz
X Xs X Xs %
Xa Xs Xa Xs X3 Xs
@ ®) ©
Xa
X» Xz
X
Xq X1 2
6/<) X
X3 X3

(d) (e) ®

(9)

ADDED EDGES == TRIANGULATION
% = It is easy to check if a graph is tri-
X, Xs angulated in linear time. It is easy to

triangulate a non-triangulated graph.
/ But it is very hard to do so in a way
@ that induces small clique sizes.

i S 2 Z qo i O/O &
Xz
Xy
Xs

MULTIPLE QUERIES

e The ELIMINATION algorithm we described was query based: given
the single node marginal to compute (the last item in the ordering),
it efficiently summed out or conditioned on all other variables.

e But what if we want to do multiple inferences?
For example, during learning, constraint satisfaction, planning.

MORALIZATION

e For directed graphs, the parents may not be explicitly connected,
but they are involved in the same potential function p(z;|xs,).

e Thus to think of ELIMINATION as a node removal algorithm, we
first must connect all the parents of every node and the drop the
directions on the links.

o This step is known as “Moralization” and it is essential: since
conditioning couples parents in directed models (“explaining away")
we need a mechanism for respecting this when we do inference.

Xa Xa

X2 Xz

EFFICIENT MULTI-ELIMINATION

e We could run ELIMINATION once for each marginal, but this
would be extremely inefficient since most of the calculations would
be duplicated.

e We want an algorithm that reuses work efficiently to compute all
marginals (or pairwise marginals) given evidence

e We do not want to duplicate work unecessarily.
We want to reuse calculations as best as possible.

e This needs:
1) A plan for which intermediate factors to compute in what order.
2) Some storage for these intermediate factors.

TREE-STRUCTURED GRAPHICAL MODELS ELIMINATION ON TREES

e For now, we will focus on tree-structured graphical models. e Now consider eliminating node j which is followed by 7 in the order.
e Trees are an important class; they incorporate all chains (e.g. e Which nodes appear in the potential created after summing over 57
HMMs) as well. — nothing in the subtree below j (already eliminated)
e Exact inference on trees is the basis for the junction tree algorithm - nothieg from other eubtrees, sittce the graph is a tree
which solves the general exact inference problem for directed acyclic = only 7, from);; which relates 7 and ;
graphs and for many approximate algorithms which can work on e Call the factor that is created mﬂ(:cl)
intractable or cyclic graphs. and think of it as a message that
e Directed and undirected trees make exactly same conditional J passes to i when j is eliminated.
independence assumptions, so we cover them together. e This message is created by

summing over j the product of
all earlier messages my, ()

ORP\ q‘ P sent to j as well as ij(Ij)

(if j is an evidence node).

(a) (b) (c) (@) (b)
ELIMINATION ON TREES ELIMINATE = MESSAGE PASSING
o Recall basic structure of ELIMINATE: e On a tree, ELIMINATE can be thought of as passing messages up

to the query node at the root from the other nodes at the leaves or
interior. Since we ignore subtrees with no evidence, observed
(evidence) nodes at always at the leaves.

1. Convert directed graph to undirected by moralization.
2. Chose elimination ordering with query node last.
3. Place all potentials on active list. _
o _ _ _ e The message m;(;) is created when we sum over z;
4. Eliminate nodes by removing all relevant potentials, taking
product, summing out node and placing resulting factor back E
onto potential list. mgi(ei) = Z (@),) H my(2;)
j kec(j)

e What happens when the original graph is a tree? , _
o At the final node Ty, we obtain the answer:

1. No moralization is necessary.

2. There is a natural elimination ordering with query node as root. p(xf'|iE) X ¢E(x}‘) H mk‘f(mf)
(Any depth first search order.) kee(f)

3. All subtrees with no evidence nodes can be ignored (since they o If j is an evidence node, wE(xj) = 0(wj, 7)), else 1/1E(33j) =1.
will leave a potential of unity once they are eliminated). e If j is a leaf node in the ordering, c(j) is empty, otherwise c(j) are

the children of j in the ordering.

MESSAGES ARE REUSED IN MULTIELIMINATION

e Consider querying 1, T2, x3 and x4 in the graph below.
e The messages needed for x|, x9, 4 individually are shown (a-c).

e Also shown in (d) is the set of messages needed to compute all
possible marginals over single query nodes.

Ox Ox

O [,,
I My (%)) Mya(x) 1J‘ M5 (x;) ﬂ my,(x) LJj mpy (%)

t
(@ (b)

1 % % (% %
me() \m(xg M) 2, M) my(x) N M%) Z \\“‘z(xﬂ
- . Maa(K)N M) Mo\
Xa ((O % O % (O DR % O x
) ©

@

e Key insight: even though the naive approach (rerun Elimination)
needs to compute N2 messages to find marginals for all N query
nodes, there are only 2N possible messages.

e We can compute all possible messages in only double the amount
of work it takes to do one query.

e Then we take the product of relevant messages to get marginals.

BELIEF PROPAGATION (SUM-PRODUCT) ALGORITHM

e Choose a root node (arbitrarily or as first query node).
o If j is an evidence node, @ZJE(:EJ) =0(zj,7j), else @DE(x]) =1

e Pass messages from leaves up to root and then back down using:

myi(x) = E (@) (s, ;) 1T mujt=))
j kec(j)
e Given messages, compute marginals using:
plrilxp) oc P (z;) T mui(a:)
kec(i)

COMPUTING ALL POSSIBLE MESSAGES

e How can we compute all possible messages efficiently?

e Idea: respect the following MESSAGE-PASSING-PROTOCOL:
A node can send a message to a neighbour only when it has
received messages from all its other neighbours.

e Protocol is realizable: designate one node (arbitrarily) as the root.
Collect messages inward to root then distribute back out to leaves.

® Once we have the messages, we can compute marginals using:
- E
plrilxp) o v (x;) T muilx:)
kec(i)
e Remember that the directed tree on which we pass messages might
not be same directed tree we started with.

e We can also consider “synchronous” or “asynchronous” message
passing nodes that respect the protocol but don’t use the
Collect-Distribute schedule above. (Must prove this terminates.)

After these calls have

<
13
=
g
g
z
5
=
<}
@
O
&=
=
g
H

§
z
g
=
9
g

1y choice of root node,
call to COLLECT causes messages to flow inward from the leaves to the root. A subsequent call to

3
E
W
2
[
o
13
<
&
g
=
&
c
S
g
&
[=9
2
0
<
<
[S]
e
3
g
=
g
g
g
<

DISTRIBUTE causes messages to flow outward from the root to the leaves.
returned, the singleton marginals can be computed locally at each node

= . & —_
= & = &
= = a2 =
= —~ £ = — > g
a < 7] = .) = S =
- £ 3 3 & 2T O ¥ & EE3
s § 2% 3 £:% E2 ZF¥ 4 573
£8fsfs: £ 82 2938 Se 55 &
FEEooBoE & = T ER TRTE & 2R %
Ccog=zaz2Eas grE =38 Sh=zE o e “
E2Euluiyl 8y% SuUfs ESuUZ fo =3 =
S50UCUaYs gYSEL £U0Z EEL8 £ 28 g
E;Hh = = Z u = S & EEE;« s 3 2C) g
FTE -8 & & 28 & 2C » gx& 2 E == =]
2 = = @» z z =
g = 3 o 7 g g
%3] = O e ©n &) L0
]

COMPUTING JOINT PAIRWISE POSTERIORS SuM-ProDpUCT, MAX-PRODUCT AND SEMIRINGS

e We can also easily compute the joint pairwise posterior distribution e Why can we use the same trick for MAP as for marginals?

for any pair of connected nodes z;, Ly e Because multiplication distributes over max as well as sum:

e To do this, we simply take the product of all messages coming into

, : _ max(ab, ac) = a max(b, c)
node i (except the message from node j), all the messages coming

into node j (except the message from node i) and the potentials o Formally, both the “sum-product” and “max-product” pair are
bi(wq), v (a5), i,). commutative semirings.
e The posterior is proportional to this product: e |t turns out that the “max-sum” pair is also a semiring:
plai ajixp) o v @) e eg) T muites) T] mej(ay) max{a+b,a+¢) = o+ max(b,c)
k#jec(i) (#iec(j) which means we can do MAP computations in the log domain:
e These joint pairwise posteriors cover all the maximal cliques in the m}zgxp(x) = m)?dpr(a:ﬂxm) = mgxlogp(x) = m}znglogp(mi]Xm)
tree, and so those are all we need to do learning. i i

e Inference of other pairwise or higher order joint posteriors is
possible, but more difficult.

MAXIMIZING INSTEAD OF SUMMING Max-PrRoDUCT ALGORITHM

e ELIMINATION and BELIEF PROPAGATION both summed over e Choose a root node arbitrarily.
all possible values of the marginal (non-query, non-evidence) nodes

e If j is an evidence node, ¥ (x;) = ¢ Ti,T;), else Ez.)y=1.
to get a marginal probability. J) (75 Vi)

_ o _ e Pass messages from leaves up to root using:
e What if we wanted to maximize over the non-query, non-evidence
nodes to find the probabilty of the single best setting consistent

max E max
with any query and evidence? i (i) ﬁx LA H M (z5)
kee(y)
max p(x) = max max max max max p(xX) p(xz|x1)p(x3/x1)p(x4]x2) p(x5|x3) p(X6|X2, X5) i A . .
x om m m % ' 3 e Remember which choice of z; = :L‘j yielded maximum.

= max p(x;) max p(xz|x1) max p(x;|x1) max p(x4|xs) max p(xs/xs)p(xg|x2, x5)
X1 Xo X3 X4 X5

. o Given messages, compute max value using any node i:
e This is known as the maximum a-posteriori or MAP configuration. 8es, P & any

e It turns out that (on trees), we can use an algorithm exactly like

o ..E _ E/.. (.
belief-propagation to solve this problem. maxp (x|E) = X (i) H mi; (i)

kec(i)
o Retrace steps from root back to leaves recalling best :L’}k to get the
maximizing argument (configuration) x*.

EFFICIENT PROBABILISTIC INFERENCE

e We want to efficiently compute the posterior p(xp|xf) over query
nodes X -, conditioned on evidence nodes x ; while integrating out
marginal nodes xp when the joint distribution is represented by a
directed or undirected graphical model.

e For some models (e.g. mixtures and factor analysis), this was an
easy application of Bayes rule. For a single node posterior (i.e. xp
is a single node), there was a simple elimination algorithm. But it
required a node ordering to be given, which told it which order to
do the summations in and work could not be reused.

o We seek a general algorithm that is correct and takes advantage of
the Markov properties of the graphical model to decompose a
general calculation into a linked set of local computations.

e For tree-structured graphical models, there was the efficient Belief
Propagation algorithm, but it didn't work on general DAGs.

ExaMPLE: HMM LIKELIHOOD CALCULATION

e To evaluate the probability P({y}), we want:
P({y}) = 2 P{x} {v})
{x}
P(observed sequence) = > P(observed outputs, state path)
all paths

e Looks hard! (#paths = #statesT) But joint probability factorizes:

Py} => > - ZHPwt\Xt 1P (ytlz)

X1 X2 X7 t=1

= P(x1)P(y1]x1) D P(xalx1)P(yalx2) - - - > P(xz|xp_1)P(yr|x7)

X1 X2 Xr

e By moving the summations inside, we can save a lot of work.

BELIEF PROPAGATION (SUM-PRODUCT) ALGORITHM

e Choose a root node arbitrarily.
e If j is an evidence node, wE(wj) =0(wj, 7)), else wE(a:j) =1

® Pass messages from leaves up to root and then back down using:

E
mi(ai) = > | P @, ap) T mele))
Zj kec(j)
e Compute node marginals using the product of incoming messages:
plrilxp) oc vF (@) [muilz)

kec(i)

THE FORWARD () RECURSION

e We want to compute:
L=P({y}) = X P({x}, {y})
{x}

e There is a clever “forward recursion” to compute the sum efficiently.

aj(t) = P(yg’ $t:j)

aj(l) = mjA;(y1)

ag(t+1) = {> a;(t)S1} Ar(ye1)
J

o Notation: x0 = {xq4,....%}; ¥ = {ya. ..., ys}
e This enables us to easily (cheaply) compute the desired likelihood L
since we know we must end in some possible state:

L= Zak(T
k

HMM INFERENCE: BuUuGSs ON A GRID

o Naive algorithm:
1. start bug in each state at t=1 holding value 0

2. move each bug forward in time: make copies & increment the
value of each copy by transition prob. + output emission prob.

3. go to 2 until all bugs have reached time T’

4. sum up values on all bugs

states

time

HMMSs: INFERENCE OF HIDDEN STATES

e What if we we want to estimate the hidden states given
observations? To start with, let us estimate a single hidden state:

oy P e plan)
plr{y}) = v(x1) oy D)

_ pilep(y] lvop(an)

piy])
Py}, zp(y o)
piy])
.) = afry)B(wy)
plr{y}) = v(x1) 7})(le)
where aj(t) =p y1 , Tt =7)

(
Bit) = plytiy o =7)
vilt) = play=1i|yl)

Bugs oN A GRID - TRICK

o Clever recursion:
adds a step between 2 and 3 above which says: at each node, replace
all the bugs with a single bug carrying the sum of their values

states

a —— time

o This trick is called dynamic programming, and can be used whenever
we have a summation, search, or maximization problem that can be
set up as a grid in this way. The axes of the grid don't have to be
“time” and “states”.

FORWARD-BACKWARD ALGORITHM

o We compute these quantites efficiently using another recursion.
Use total prob. of all paths going through state 7 at time ¢ to
compute the conditional prob. of being in state 7 at time t:

Yilt) = plar =i | y1)
= ai(t)(t)/ L

where we defined:
Bi(t) = p(yii |z =17)

e There is also a simple recursion for 3;(t):

t) = Z S;iBi(t + 1) Ai(yes1)
Bi(T) = |

e «;(t) gives total inflow of prob. to node (t,1)
B;(t) gives total outflow of prob.

FORWARD-BACKWARD ALGORITHM

VITERBI DECODING

e «;(t) gives total inflow of prob. to node (,1)
B;(t) gives total outflow of prob.

states
o

oa — time <«—f
o Bugs again: we just let the bugs run forward from time O to ¢ and
backward from time 7" to ¢.

e In fact, we can just do one forward pass to compute all the «;(t)
and one backward pass to compute all the 3;(¢) and then compute
any 7;(t) we want. Total cost is O(K>T).

e The numbers 7;(t) above gave the probability distribution over all
states at any time.

e By choosing the state 7«(t) with the largest probability at each
time, we can make a “best” state path. This is the path with the
maximum expected number of correct states.

e But it is not the single path with the highest likelihood of
generating the data. In fact it may be a path of prob. zero!

e To find the single best path, we do Viterbi decoding which is just
Bellman's dynamic programming algorithm applied to this problem.

o The recursions look the same, except with max instead of 3.

e Bugs once more: same trick except at each step kill all bugs but
the one with the highest value at the node.

UsiNG HMMS FOR RECOGNITION

BAUM-WELCH ALGORITHM: EM TRAINING

e Use many HMM s for recognition by:
1. training one HMM for each class (requires labelled training data)
2. evaluating probability of an unknown sequence under each HMM
3. classifying unknown sequence: HMM with highest likelihood

| }

L1 L2 Lk

o This requires the solution of two problems:

1. Given model, evaluate prob. of a sequence.
(We can do this exactly & efficiently.)

2. Give some training sequences, estimate model parameters.
(We can find the local maximum of parameter space nearest our
starting point using Baum-Welch (EM).)

1. Intuition: if only we knew the true state path then ML parameter

estimation would be trivial (MM1 on z, conditional on y).

2. But: can estimate state path using inference recursions.

3. Baum-Welch algorithm (special case of EM): estimate the states,

then compute params, then re-estimate states, and so on ...

4. This works and we can prove that it always improves likelihood.

5. However: finding the ML parameters is NP complete, so initial

conditions matter a lot and convergence is hard to tell.

likelihood

/

parameter space

PARAMETER ESTIMATION USING EM

e S;j are transition probs; state j has output distribution A;(y)
P(xyiq = jlog =1i) = S;; P(x1 =j) = m;
P(yt = ylot = j) = Aj(y)
e Complete log likelihood:

T—1 T
logp(x,y) = log{mx; [I Sryxiy 1] Azi(ye)}
t=1 t=1
i) Ty Gl 4 xk]
=log{[[= " II HSz‘j ITIT Ak(ye)™tl}
i t=1 ij t=1 k
, T-1 o T .
=Y [xillogm + > > [af,) log Sij + DY [xf]log Ay (yy)
i t=1 1ij t=1k

where the indicator [x%] = 1if xy = i and 0 otherwise

e For EM, we need to compute the expected complete log likelihood.

M-sTEP: NEW PARAMETERS ARE JUST
RATIOS OF FREQUENCY COUNTS

e Initial state distribution: expected #times in state ¢ at time 1:
i = 7i(1)
e Expected #transitions from state 7 to j which begin at time ¢:
2;i5(t) = a;(t)S;Aj(y1)8;(t +1)/ L
so the estimated transition probabilities are:
T T—1
Sij= > wii(t) [> vilt)
t=1 t=1

e The output distributions are the expected number of times we
observe a particular symbol in a particular state:

T
Ajlyo) = >0 (1) /S5t
=1

tlyt=yo

STATE EXPECTATIONS REQUIRED FROM THE E-STEP

e The expected complete log likelihood requires
Yi(t) =< [z}] > and xiij(t) =< [x%,x‘gﬂ} >

e So in the E-step we need to compute both
7i(t) = plzt = il{y}) and x;;;(t) = p(zt = i, 2041 = jH{y }).

e We already know how to compute v;(t) using a and /3 recursions.
We can compute x;;;(t) the same way (recall BP):

z;i5(t) = p@it, i {y}) = p(rit {y Pp(@ e | zie, {y })
PoT T T
= p(@it, Y1 1Yy 1)P(@ g [Tt i) /21 |Y1)
_ p(zir, YDy i, v PWE T jrr, i) P jis | i)

HMM PRACTICALITIES

Wiyl Dp(ul) Pyl = 1)
_ p(xip, YO i) Pyt |25 P ol e)P (2 e 2t
pyl) Pyl e = 1)

= a;(t)Aj(yp41)S:50;(t + 1)/ L

o Multiple observation sequences: can be dealt with by averaging
numerators and averaging denominators in the ratios given above.

e |nitialization: mixtures of Naive Bayes or mixtures of Gaussians

o Numerical scaling: the probability values that the bugs carry get
tiny for big times and so can easily underflow. Good rescaling trick:

p=Plylyi™) () =at)] o

or represent all probabilities as logs and use logsum

SymMBoL HMM EXAMPLE

SUMMARY: PROBABILISTIC GRAPHICAL MODELS

e Character sequences (discrete outputs)

e Graphical models provide a compact factorizations of large joint
probability distributions by exploiting conditional independencies.

o Efficient algorithms exist for learning the parameters of a graphical
model and for inferring distributions over certain variables in the
model given observations of other variables.

e The simplest graphical models have only a single node and
represent parametric distributions as in traditional statistics.

e The next most complex models have two nodes and represent
classification, regression, clustering and latent factor models.

e Even more complex models have chain and tree structures.

o For fully observed models, maximum likelihood learning decouples
across the network and each node can learn its parameters given
only observations of itself and its parents.

MixTurRE HMM EXAMPLE

SUMMARY: EM AND BELIEF PROPAGATION

e Geyser data (continuous outputs)

State output functions
110, T T T T T T

100t 1

x N

X X
x
x
X
X

90 x

o]
o
T
x
<
X X
b
XXX K
x x ¥ Jx
* A
X
4 ' x
h 1K
x |
x
‘%
x
x
x
x
%, X
oo Ao
NS)
X x
3 WX X
X
X, X Fa
| x
! x
\
.
N
.

70F X ARG x

»
A X X
|
|

60

50

e In networks with hidden or latent variables, learning is much harder
and requires inferring the distribution over the unobserved variables
given the observed variables.

o Given the results of such inference, the EM algorithm can be used
to update the parameters in a way that never decreases the
likelihood of the training data.

e Inference in two-node models is just a simple application of Bayes'
rule. This is used at test time in supervised models and at training
time in unsupervised models.

e In more complex models such as chains and trees, efficient
inference can be performed with the belief propagation (BP)
algorithm which is the natural extension of dynamic programming
to statistical models.

