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RANDOM VARIABLES AND DENSITIES

e Random variables X represents outcomes or states of world.
Instantiations of variables usually in lower case: z
We will write p(x) to mean probability(X = x).

e Sample Space: the space of all possible outcomes/states.
(May be discrete or continuous or mixed.)

e Probability mass (density) function p(x) > 0
Assigns a non-negative number to each point in sample space.
Sums (integrates) to unity: >, p(x) =1 or [ p(x)ds = 1.
Intuitively: how often does = occur, how much do we believe in x.

e Ensemble: random variable + sample space+ probability function

e But you have to be careful about the context and about defining
random variables and sample spaces carefully. Otherwise you can
get in trouble (see, e.g. Simpson's paradox/Prisoner’s paradox).

PROBABILITY

EXPECTATIONS, MOMENTS

o We use probabilities p(z) to represent our beliefs B(z) about the
states x of the world.

e There is a formal calculus for manipulating uncertainties
represented by probabilities.

e Any consistent set of beliefs obeying the Cox Axioms can be
mapped into probabilities.

1. Rationally ordered degrees of belief:
if B(x) > B(y) and B(y) > B(z) then B(z) > B(z)
2. Belief in = and its negation z are related: B(z) = f[B(z)]

3. Belief in conjunction depends only on conditionals:
B(z and y) = g[B(x), B(y|z)] = g[B(y), B(x[y)]

e Expectation of a function a(z) is written E|a| or (a)
Ela] = (a) = ) _ p(w)a(x)

e.g. mean = )y xp(x), variance = ) (x — E[z])
e Moments are expectations of higher order powers.
(Mean is first moment. Autocorrelation is second moment.)

“p(x)

e Centralized moments have lower moments subtracted away
(e.g. variance, skew, curtosis).

@ Deep fact: Knowledge of all orders of moments
completely defines the entire distribution.




JOINT PROBABILITY

e Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

e We call this a joint ensemble and write
p(x,y) = prob(X =z and Y = y)

=

4

p(xy.2)

CONDITIONAL PROBABILITY

o If we know that some event has occurred, it changes our belief
about the probability of other events.

e This is like taking a "slice” through the joint table.
plzly) = p(a,y)/p(y)

p(x.ylz)

MARGINAL PROBABILITIES

e We can "sum out” part of a joint distribution to get the marginal
distribution of a subset of variables:

pla) = S plr,y)
Yy

e This is like adding slices of the table together.

‘V px.y)

X

e Another equivalent definition: p(z) = 3_, p(z[y)p(y).

BAYES’ RULE

e Manipulating the basic definition of conditional probability gives
one of the most important formulas in probability theory:

(] ):p(ylx)p(w) __ plylz)p(z)
p(y) S p(yla)p(a!)

e This gives us a way of "reversing” conditional probabilities.

e Thus, all joint probabilities can be factored by selecting an ordering
for the random variables and using the " chain rule”:

.y, 2,...) = plx)plyle)p(zlz, y)p(. .. |z, y, 2)]




INDEPENDENCE & CONDITIONAL INDEPENDENCE

e Two variables are independent iff their joint factors:

p(x,y) = p(x)p(y)
EREEREREC

X

px.y)

p(y)

e Two variables are conditionally independent given a third one if for
all values of the conditioning variable, the resulting slice factors:

p(z,ylz) = p(z[2)p(ylz) V=2

Cross ENTROPY (KL DIVERGENCE)

e An assymetric measure of the distancebetween two distributions:

KLlpllq) = Zp )log p(x) —log ()]

e KL > 0 unless p = ¢q then KL:O

o Tells you the extra cost if events were generated by p(z) but
instead of charging under p(x) you charged under ¢(x).

ENTROPY

e Measures the amount of ambiguity or uncertainty in a distribution:
Zp )log p(x

e Expected value of —log p(x) (a function which depends on p(x)!).

e H(p) > 0 unless only one possible outcomein which case H(p) = 0.

e Maximal value when p is uniform.

e Tells you the expected "cost” if each event costs — log p(event)

JENSEN’S INEQUALITY

e For any concave function f() and any distribution on z,

E[f(z)] < f(Ez])]
f(E[x])

El0]

eeg. log() and /" are concave
e This allows us to bound expressions like log p(z) = log > . p(x, 2)




STATISTICS

e Probability: inferring probabilistic quantities for data given fixed
models (e.g. prob. of events, marginals, conditionals, etc).

e Statistics: inferring a model given fixed data observations
(e.g. clustering, classification, regression).

e Many approaches to statistics:
frequentist, Bayesian, decision theory, ...

(CONDITIONAL) PROBABILITY TABLES

e For discrete (categorical) quantities, the most basic parametrization
is the probability table which lists p(z; = k' value).

e Since PTs must be nonnegative and sum to 1, for k-ary variables
there are k — 1 free parameters.

e If a discrete variable is conditioned on the values of some other
discrete variables we make one table for each possible setting of the
parents: these are called conditional probability tables or CPTs.

|+ A

p(xy.2) p(xyl2)

SOME (CONDITIONAL) PROBABILITY FUNCTIONS

EXPONENTIAL FAMILY

e Probability density functions p(x) (for continuous variables) or
probability mass functions p(x = k) (for discrete variables) tell us
how likely it is to get a particular value for a random variable
(possibly conditioned on the values of some other variables.)

e We can consider various types of variables: binary/discrete
(categorical), continuous, interval, and integer counts.

e For each type we'll see some basic probability models which are
parametrized families of distributions.

e For (continuous or discrete) random variable x
p(x[n) = hix)exp{n ' T(x) — A(n)}

1 T
mh(x) exp{n T(x)}

is an exponential family distribution with
natural parameter 7).

e Function T'(x) is a sufficient statistic.
e Function A(n) = log Z(n) is the log normalizer.

e Key idea: all you need to know about the data is captured in the
summarizing function T'(x).




BERNOULLI

e For a binary random variable with p(heads)=x:

1—x

pla|r) = 7*(1 =)

= exp {log (&) 2+ log(1 — w)}

e Exponential family with:

n=log—
T(x)==x
A(n) = —log(1 — m) = log(1 + €
h(z) =1

MULTINOMIAL

e For a set of integer counts on k trials

k! T :

— 1,22 Tn __ ) .

p(x|m) = Tyt = h(X) exp x; log m;
zylzel - xp L T2 n ZZ:

e But the parameters are constrained: ), m; = 1.

So we define the last one mm, =1 — > ' m;.

p(x|m) = h(x)exp {27;11 log (%) x; + klog m,}

e Exponential family with:
The softmax function

n; = logm; — log mp relates the basic and

e The logistic function relates the natural parameter and the chance T(x;) = x; natural parameters:
of heads . A(n) = —klogmy, = klog) ;e e'li
T = —=7
T = h(x) = k!/xilag! - - xp! L el
1 + e—’r] ( ) / 1-42 n Z] €
PoIssoN GAUSSIAN (NORMAL)

e For an integer count variable with rate A:
A=A

p(z|A) =

x!
1

= —exp{zlog A — A}
!

e Exponential family with:

n = log A
T(x)==x
Al) = =¢"
M) =

e e.g. number of photons x that arrive at a pixel during a fixed
interval given mean intensity A

e Other count densities: binomial, exponential.

e For a continuous univariate random variable;

1 1
2 2
p(l”/},70' ) = \/%0 eXp{—p(l’—M) }
1 ) U 22 /12 o
- V2o P o2 202 202 69

e Exponential family with: /\

n=ln/o*; —1/207
T(x) = [z; o7
A(n) =logo + p/20°
h(z)=1/v2r
e Note: a univariate Gaussian is a two-parameter distribution with a
two-component vector of sufficient statistis.




MULTIVARIATE GAUSSIAN DISTRIBUTION

e For a continuous vector random variable:

ploln ) = 25l P { —Jx =)= -}

e Exponential family with:
n=[S""u; —1/2571
T(x)=[x; xx']
A(n) =log [2[/2+ u S /2
h(z) = (27) /2
o Sufficient statistics: mean vector and correlation matrix.
e Other densities: Student-t, Laplacian.

e For non-negative values use exponential, Gamma, log-normal.

GAUSSIAN MARGINALS/CONDITIONALS

e To find these parameters is mostly linear algebra:
Let z=[x"y"]" be normally distributed according to:

=B~ (B [e8])

where C is the (non-symmetric) cross-covariance matrix between x
and y which has as many rows as the size of x and as many
columns as the size of y.
The marginal distributions are:
x ~N(a;A)
y ~N(b;B)
and the conditional distributions are:
x|y ~ N(a+CB (y —b);A—CB~'C")
ylx ~N(b+C'A ' (x—a);B-C'A!C)

IMPORTANT (GAUSSIAN FACTS

o All marginals of a Gaussian are again Gaussian.
Any conditional of a Gaussian is again Gaussian.

'\xo p(X.y)

MOMENTS

e For continuous variables, moment calculations are important.

e We can easily compute moments of any exponential family
distribution by taking the derivatives of the log normalizer A(7).

e The qth‘ derivative gives the qth‘ centred moment.

w = mean
dn
d2A
(77) = variance

e When the sufficient statistic is a vector, partial derivatives need to
be considered.




LINEAR-GAUSSIAN CONDITIONALS

LIKELIHOOD FUNCTION

e When the variable(s) being conditioned on (parents) are discrete,
we just have one density for each possible setting of the parents.
e.g. a table of natural parameters in exponential models or a table
of tables for discrete models.

e When the conditioned variable is continuous, its value sets some of
the parameters for the other variables.

e A very common instance of this for regression is the
“linear-Gaussian”: p(y|x) = gauss(6'x; ).

o For discrete children and continuous parents, we often use a
Bernoulli/multinomial whose paramters are some function f(0'x).

e So far we have focused on the (log) probability function p(x|6)
which assigns a probability (density) to any joint configuration of
variables x given fixed parameters 6.

e But in learning we turn this on its head:
we have some fixed data and we want to find parameters.

e Think of p(x|#) as a function of @ for fixed x:
L(0;x) = p(x|0)
((0;x) = log p(x10)
This function is called the (log) “likelihood” .
o Chose # to maximize some cost function ¢(6) which includes ¢(6):
c(0) = £(0; D) maximum likelihood (ML)
c(0) =06;D)+r(6) maximum a posteriori (MAP)/penalized ML

(also cross-validation, Bayesian estimators, BIC, AIC, ...)

MULTIPLE OBSERVATIONS, COMPLETE DATA, IID SAMPLING

MAaXiMUM LIKELIHOOD

e A single observation of the data x is rarely useful on its own.

e Generally we have data including many observations, which creates

a set of random variables: D = {x! x?, ... ,XM}

e Two very common assumptions:

1. Observations are independently and identically distributed (IID)
according to joint distribution of graphical model: [ID samples.

2. We observe all random variables in the domain on each
observation: complete data.

e For IID data:
p(DI8) = [ [ p(x™10)
m

((6:D) = " log p(x™(0)

e Idea of maximum likelihod estimation (MLE): pick the setting of
parameters most likely to have generated the data we saw:

Orpp, = argmaxy ((6; D)

e Very commonly used in statistics.
Often leads to “intuitive”, “appealing”, or “natural’ estimators.




EXAMPLE: BERNOULLI TRIALS

EXAMPLE: UNIVARIATE NORMAL

o We observe M iid coin flips: D=H,H, T H,...
e Model: p(H) =0 p(T)=(1-20)
e Likelihood:
£(0; D) = log p(DI0)
= logH ox" (1-— 0)1_Xm

m

=log# me +log(1 — 6) Z(l —x"
m

m

= log ONy + log(1 — @) N

e Take derivatives and set to zero:

9t _Nuy_ Nr
90 0 1—-06
Ny
:>9K'IL NHJFNT

)

e We observe M iid real samples: D=1.18,-.25,.78,. ..
o Model: p(z) = (2702) /2 exp{—(z — p)?/20%}
o Likelihood (using probability density):
((6:D) = log p(D6)
M o I @™ = p)?
= —71Og(27{0_ ) — 52 T
m
e Take derivatives and set to zero:
g_ﬁ = (1/02) Zm(Im — )
% = —%12 + %,4 > (@m — 1)
= pnr = (1/M) 32, am
U]%[L = (1/M) Zm x72n - N%{L

EXAMPLE: MULTINOMIAL

EXAMPLE: UNIVARIATE NORMAL

e We observe M iid die rolls (K-sided): D=3,1K.2,...
e Model: p(k) =0, > .0, =1
e Likelihood (for binary indicators [x"" = k|):

((0;D) = log p(D|0)

= log H Oxm = log H 9[1X’In:1} - @E{m:

k]

m m
= Zlog@k Z[Xm = k| = ZNklogGk
k m k

e Take derivatives and set to zero (enforcing > ;. 6. = 1):

06 _ N _
é?Qk_Hk
:0};:&

M




EXAMPLE: LINEAR REGRESSION

e In linear regression, some inputs (covariates,parents) and all
outputs (responses,children) are continuous valued variables.

e For each child and setting of discrete parents we use the model:
pylx, 0) = gauss(y|6x, o)

e The likelihood is the familiar “squared error” cost:

1 ,
T‘Q (yrn - QTXm)Q

0(6;D) = —
m
e The ML parameters can be solved for using linear least-squares:

% - Z(ym _ QTXm)Xm

m
= 0 = (X'X) XY

SUFFICIENT STATISTICS

e A statistic is a function of a random variable.
o T'(X) is a “sufficient statistic” for X if
T(xHY=Tx% = L#:x")=L0:x") VI
e Equivalently (by the Neyman factorization theorem) we can write:
p(x[0) = h(x,T(x)) g (T'(x),0)
e Example: exponential family models:
p(x10) = h(x) exp{n ' T(x) — A(n)}

EXAMPLE: LINEAR REGRESSION

SUFFICIENT STATISTICS ARE SUMS

e In the examples above, the sufficient statistics were merely sums
(counts) of the data:
Bernoulli: # of heads, tails
Multinomial: # of each type
Gaussian: mean, mean-square
Regression: correlations

e As we will see, this is true for all exponential family models:
sufficient statistics are average natural parameters.

e Only exponential family models have simple sufficient statistics.
(There are some degenerate exceptions, e.g. the uniform has
sufficient statistics of max/min.)




MLE rFOR EXPONENTIAL FAMILY MODELS

o Recall the probability function for exponential models:

p(x|0) = h(x) exp{n' T(x) — A(n)}
e For iid data, sufficient statistic is >, T'(x"):

((n; D) = log p(Dn) = <Zlogh > MA(nH(nTZT(Xm))

e Take derivatives and set to zero:

0A
87} zm m - M (n)

1
DA(n
= ag, MZ (™)

ML = M Zm (x™)

recalling that the natural moments of an exponential distribution
are the derivatives of the log normalizer.

FUNDAMENTAL OPERATIONS WITH DISTRIBUTIONS

e Generate data: draw samples from the distribution. This often
involves generating a uniformly distributed variable in the range
[0,1] and transforming it. For more complex distributions it may
involve an iterative procedure that takes a long time to produce a
single sample (e.g. Gibbs sampling, MCMC).

e Compute log probabilities.
When all variables are either observed or marginalized the result is a
single number which is the log prob of the configuration.

e Inference: Compute expectations of some variables given others
which are observed or marginalized.

e [ earning.
Set the parameters of the density functions given some (partially)
observed data to maximize likelihood or penalized likelihood.

BASIC STATISTICAL PROBLEMS

e Let's remind ourselves of the basic problems we discussed on the
first day: density estimation, clustering classification and regression.

o Density estimation is hardest. If we can do joint density estimation
then we can always condition to get what we want:
Regression: p(y[x) = p(y. x)/p(x)
Classification: p(c|x) = p(c, x)/p(x)
Clustering: p(c|x) = p(c,x)/p(x) ¢ unobserved

LEARNING WITH KNOWN MODEL STRUCTURE

e In Al the bottleneck is often knowledge acquisition.
e Human experts are rare, expensive, unreliable, slow.
e But we have lots of data.

e Want to build systems automatically based on data and a small
amount of prior information (from experts).

e Many systems we build will be essentially probability models.

e Assume the prior information we have specifies type & structure of
the model, as well as the form of the (conditional) distributions or
potentials.

e In this case learning = setting parameters.

e Also possible to do “structure learning” to learn model.




