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Probability

•We use probabilities p(x) to represent our beliefs B(x) about the
states x of the world.

• There is a formal calculus for manipulating uncertainties
represented by probabilities.

• Any consistent set of beliefs obeying the Cox Axioms can be
mapped into probabilities.

1. Rationally ordered degrees of belief:
if B(x) > B(y) and B(y) > B(z) then B(x) > B(z)

2. Belief in x and its negation x̄ are related: B(x) = f [B(x̄)]

3. Belief in conjunction depends only on conditionals:
B(x and y) = g[B(x), B(y|x)] = g[B(y), B(x|y)]

Random Variables and Densities

• Random variables X represents outcomes or states of world.
Instantiations of variables usually in lower case: x
We will write p(x) to mean probability(X = x).

• Sample Space: the space of all possible outcomes/states.
(May be discrete or continuous or mixed.)

• Probability mass (density) function p(x) ≥ 0
Assigns a non-negative number to each point in sample space.
Sums (integrates) to unity:

∑

x p(x) = 1 or
∫

x p(x)dx = 1.
Intuitively: how often does x occur, how much do we believe in x.

• Ensemble: random variable + sample space+ probability function

• But you have to be careful about the context and about defining
random variables and sample spaces carefully. Otherwise you can
get in trouble (see, e.g. Simpson’s paradox/Prisoner’s paradox).

Expectations, Moments

• Expectation of a function a(x) is written E[a] or 〈a〉

E[a] = 〈a〉 =
∑

x

p(x)a(x)

e.g. mean =
∑

x xp(x), variance =
∑

x(x − E[x])2p(x)

•Moments are expectations of higher order powers.
(Mean is first moment. Autocorrelation is second moment.)

• Centralized moments have lower moments subtracted away
(e.g. variance, skew, curtosis).

•Deep fact: Knowledge of all orders of moments
completely defines the entire distribution.



Joint Probability

• Key concept: two or more random variables may interact.
Thus, the probability of one taking on a certain value depends on
which value(s) the others are taking.

•We call this a joint ensemble and write
p(x, y) = prob(X = x and Y = y)
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Marginal Probabilities

•We can ”sum out” part of a joint distribution to get the marginal

distribution of a subset of variables:

p(x) =
∑

y

p(x, y)

• This is like adding slices of the table together.
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• Another equivalent definition: p(x) =
∑

y p(x|y)p(y).

Conditional Probability

• If we know that some event has occurred, it changes our belief
about the probability of other events.

• This is like taking a ”slice” through the joint table.

p(x|y) = p(x, y)/p(y)
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Bayes’ Rule

•Manipulating the basic definition of conditional probability gives
one of the most important formulas in probability theory:

p(x|y) =
p(y|x)p(x)

p(y)
=

p(y|x)p(x)
∑

x′ p(y|x′)p(x′)

• This gives us a way of ”reversing”conditional probabilities.

• Thus, all joint probabilities can be factored by selecting an ordering
for the random variables and using the ”chain rule”:

p(x, y, z, . . .) = p(x)p(y|x)p(z|x, y)p(. . . |x, y, z)



Independence & Conditional Independence

• Two variables are independent iff their joint factors:

p(x, y) = p(x)p(y)
p(x,y)

=
x

p(y)

p(x)

• Two variables are conditionally independent given a third one if for
all values of the conditioning variable, the resulting slice factors:

p(x, y|z) = p(x|z)p(y|z) ∀z

Entropy

•Measures the amount of ambiguity or uncertainty in a distribution:

H(p) = −
∑

x

p(x) log p(x)

• Expected value of − log p(x) (a function which depends on p(x)!).

•H(p) > 0 unless only one possible outcomein which case H(p) = 0.

•Maximal value when p is uniform.

• Tells you the expected ”cost” if each event costs − log p(event)

Cross Entropy (KL Divergence)

• An assymetric measure of the distancebetween two distributions:

KL[p‖q] =
∑

x

p(x)[log p(x) − log q(x)]

•KL > 0 unless p = q then KL = 0

• Tells you the extra cost if events were generated by p(x) but
instead of charging under p(x) you charged under q(x).

Jensen’s Inequality

• For any concave function f () and any distribution on x,

E[f (x)] ≤ f (E[x])

f(E[x])

E[f(x)]

• e.g. log() and
√

are concave

• This allows us to bound expressions like log p(x) = log
∑

z p(x, z)



Statistics

• Probability: inferring probabilistic quantities for data given fixed
models (e.g. prob. of events, marginals, conditionals, etc).

• Statistics: inferring a model given fixed data observations
(e.g. clustering, classification, regression).

•Many approaches to statistics:
frequentist, Bayesian, decision theory, ...

Some (Conditional) Probability Functions

• Probability density functions p(x) (for continuous variables) or
probability mass functions p(x = k) (for discrete variables) tell us
how likely it is to get a particular value for a random variable
(possibly conditioned on the values of some other variables.)

•We can consider various types of variables: binary/discrete
(categorical), continuous, interval, and integer counts.

• For each type we’ll see some basic probability models which are
parametrized families of distributions.

(Conditional) Probability Tables

• For discrete (categorical) quantities, the most basic parametrization
is the probability table which lists p(xi = kth value).

• Since PTs must be nonnegative and sum to 1, for k-ary variables
there are k − 1 free parameters.

• If a discrete variable is conditioned on the values of some other
discrete variables we make one table for each possible setting of the
parents: these are called conditional probability tables or CPTs.
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Exponential Family

• For (continuous or discrete) random variable x

p(x|η) = h(x) exp{η⊤T (x) − A(η)}
=

1

Z(η)
h(x) exp{η⊤T (x)}

is an exponential family distribution with
natural parameter η.

• Function T (x) is a sufficient statistic.

• Function A(η) = log Z(η) is the log normalizer.

• Key idea: all you need to know about the data is captured in the
summarizing function T (x).



Bernoulli

• For a binary random variable with p(heads)=π:

p(x|π) = πx(1 − π)1−x

= exp

{

log

(

π

1 − π

)

x + log(1 − π)

}

• Exponential family with:

η = log
π

1 − π
T (x) = x

A(η) = − log(1 − π) = log(1 + eη)

h(x) = 1

• The logistic function relates the natural parameter and the chance
of heads

π =
1

1 + e−η

Poisson

• For an integer count variable with rate λ:

p(x|λ) =
λxe−λ

x!

=
1

x!
exp{x log λ − λ}

• Exponential family with:

η = log λ

T (x) = x

A(η) = λ = eη

h(x) =
1

x!

• e.g. number of photons x that arrive at a pixel during a fixed
interval given mean intensity λ

•Other count densities: binomial, exponential.

Multinomial

• For a set of integer counts on k trials

p(x|π) =
k!

x1!x2! · · · xn!
π

x1
1 π

x2
2 · · · πxn

n = h(x) exp







∑

i

xi log πi







• But the parameters are constrained:
∑

i πi = 1.

So we define the last one πn = 1 −∑n−1
i=1 πi.

p(x|π) = h(x) exp
{

∑n−1
i=1 log

(

πi
πn

)

xi + k log πn

}

• Exponential family with:

ηi = log πi − log πn

T (xi) = xi

A(η) = −k log πn = k log
∑

i e
ηi

h(x) = k!/x1!x2! · · · xn!

The softmax function
relates the basic and
natural parameters:

πi =
eηi

∑

j eηj

Gaussian (normal)

• For a continuous univariate random variable:

p(x|µ, σ2) =
1√
2πσ

exp

{

− 1

2σ2
(x − µ)2

}

=
1√
2πσ

exp

{

µx

σ2
− x2

2σ2
− µ2

2σ2
− log σ

}

• Exponential family with:

η = [µ/σ2 ; −1/2σ2]

T (x) = [x ; x2]

A(η) = log σ + µ/2σ2

h(x) = 1/
√

2π

• Note: a univariate Gaussian is a two-parameter distribution with a
two-component vector of sufficient statistis.



Multivariate Gaussian Distribution

• For a continuous vector random variable:

p(x|µ, Σ) = |2πΣ|−1/2 exp

{

−1

2
(x − µ)⊤Σ−1(x − µ)

}

• Exponential family with:

η = [Σ−1µ ; −1/2Σ−1]

T (x) = [x ; xx⊤]

A(η) = log |Σ|/2 + µ⊤Σ−1µ/2

h(x) = (2π)−n/2

• Sufficient statistics: mean vector and correlation matrix.

•Other densities: Student-t, Laplacian.

• For non-negative values use exponential, Gamma, log-normal.

Important Gaussian Facts

• All marginals of a Gaussian are again Gaussian.
Any conditional of a Gaussian is again Gaussian.

Σ

p(x,y)

p(x)

p(y|x=x0)

x0

Gaussian Marginals/Conditionals

• To find these parameters is mostly linear algebra:
Let z = [x⊤y⊤]⊤ be normally distributed according to:

z =

[

x

y

]

∼ N
([

a

b

]

;

[

A C

C⊤ B

])

where C is the (non-symmetric) cross-covariance matrix between x

and y which has as many rows as the size of x and as many
columns as the size of y.
The marginal distributions are:

x ∼ N (a;A)

y ∼ N (b;B)

and the conditional distributions are:

x|y ∼ N (a + CB−1(y − b);A − CB−1C⊤)

y|x ∼ N (b + C⊤A−1(x − a);B − C⊤A−1C)

Moments

• For continuous variables, moment calculations are important.

•We can easily compute moments of any exponential family
distribution by taking the derivatives of the log normalizer A(η).

• The qth derivative gives the qth centred moment.

dA(η)

dη
= mean

d2A(η)

dη2
= variance

· · ·
•When the sufficient statistic is a vector, partial derivatives need to

be considered.



Linear-Gaussian Conditionals

•When the variable(s) being conditioned on (parents) are discrete,
we just have one density for each possible setting of the parents.
e.g. a table of natural parameters in exponential models or a table
of tables for discrete models.

•When the conditioned variable is continuous, its value sets some of
the parameters for the other variables.

• A very common instance of this for regression is the
“linear-Gaussian”: p(y|x) = gauss(θ⊤x; Σ).

• For discrete children and continuous parents, we often use a
Bernoulli/multinomial whose paramters are some function f (θ⊤x).

Multiple Observations, Complete Data, IID Sampling

• A single observation of the data x is rarely useful on its own.

• Generally we have data including many observations, which creates
a set of random variables: D = {x1,x2, . . . ,xM}

• Two very common assumptions:

1. Observations are independently and identically distributed (IID)
according to joint distribution of graphical model: IID samples.

2. We observe all random variables in the domain on each
observation: complete data.

Likelihood Function

• So far we have focused on the (log) probability function p(x|θ)
which assigns a probability (density) to any joint configuration of
variables x given fixed parameters θ.

• But in learning we turn this on its head:
we have some fixed data and we want to find parameters.

• Think of p(x|θ) as a function of θ for fixed x:

L(θ;x) = p(x|θ)

ℓ(θ;x) = log p(x|θ)

This function is called the (log) “likelihood”.

• Chose θ to maximize some cost function c(θ) which includes ℓ(θ):

c(θ) = ℓ(θ;D) maximum likelihood (ML)

c(θ) = ℓ(θ;D) + r(θ) maximum a posteriori (MAP)/penalizedML

(also cross-validation, Bayesian estimators, BIC, AIC, ...)

Maximum Likelihood

• For IID data:

p(D|θ) =
∏

m

p(xm|θ)

ℓ(θ;D) =
∑

m

log p(xm|θ)

• Idea of maximum likelihod estimation (MLE): pick the setting of
parameters most likely to have generated the data we saw:

θ∗ML = argmaxθ ℓ(θ;D)

• Very commonly used in statistics.
Often leads to “intuitive”, “appealing”, or “natural” estimators.



Example: Bernoulli Trials

•We observe M iid coin flips: D=H,H,T,H,. . .

•Model: p(H) = θ p(T ) = (1 − θ)

• Likelihood:

ℓ(θ;D) = log p(D|θ)

= log
∏

m

θxm
(1 − θ)1−xm

= log θ
∑

m

xm + log(1 − θ)
∑

m

(1 − xm)

= log θNH + log(1 − θ)NT

• Take derivatives and set to zero:
∂ℓ

∂θ
=

NH

θ
− NT

1 − θ

⇒ θ∗ML =
NH

NH + NT

Example: Multinomial

•We observe M iid die rolls (K-sided): D=3,1,K,2,. . .

•Model: p(k) = θk
∑

k θk = 1

• Likelihood (for binary indicators [xm = k]):

ℓ(θ;D) = log p(D|θ)

= log
∏

m

θxm = log
∏

m

θ
[xm=1]
1 . . . θ

[xm=k]
k

=
∑

k

log θk

∑

m

[xm = k] =
∑

k

Nk log θk

• Take derivatives and set to zero (enforcing
∑

k θk = 1):

∂ℓ

∂θk
=

Nk

θk
− M

⇒ θ∗k =
Nk

M

Example: Univariate Normal

•We observe M iid real samples: D=1.18,-.25,.78,. . .

•Model: p(x) = (2πσ2)−1/2 exp{−(x − µ)2/2σ2}
• Likelihood (using probability density):

ℓ(θ;D) = log p(D|θ)

= −M

2
log(2πσ2) − 1

2

∑

m

(xm − µ)2

σ2

• Take derivatives and set to zero:
∂ℓ
∂µ = (1/σ2)

∑

m(xm − µ)

∂ℓ
∂σ2 = − M

2σ2 + 1
2σ4

∑

m(xm − µ)2

⇒ µML = (1/M )
∑

m xm

σ2
ML = (1/M )

∑

m x2
m − µ2

ML

Example: Univariate Normal
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Example: Linear Regression

• In linear regression, some inputs (covariates,parents) and all
outputs (responses,children) are continuous valued variables.

• For each child and setting of discrete parents we use the model:

p(y|x, θ) = gauss(y|θ⊤x, σ2)

• The likelihood is the familiar “squared error” cost:

ℓ(θ;D) = − 1

2σ2

∑

m

(ym − θ⊤xm)2

• The ML parameters can be solved for using linear least-squares:

∂ℓ

∂θ
= −

∑

m

(ym − θ⊤xm)xm

⇒ θ∗ML = (X⊤X)−1X⊤Y

Example: Linear Regression
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Sufficient Statistics

• A statistic is a function of a random variable.

• T (X) is a “sufficient statistic” for X if

T (x1) = T (x2) ⇒ L(θ;x1) = L(θ;x2) ∀θ

• Equivalently (by the Neyman factorization theorem) we can write:

p(x|θ) = h (x, T (x)) g (T (x), θ)

• Example: exponential family models:

p(x|θ) = h(x) exp{η⊤T (x) − A(η)}

Sufficient Statistics are Sums

• In the examples above, the sufficient statistics were merely sums
(counts) of the data:
Bernoulli: # of heads, tails
Multinomial: # of each type
Gaussian: mean, mean-square
Regression: correlations

• As we will see, this is true for all exponential family models:
sufficient statistics are average natural parameters.

•Only exponential family models have simple sufficient statistics.
(There are some degenerate exceptions, e.g. the uniform has
sufficient statistics of max/min.)



MLE for Exponential Family Models

• Recall the probability function for exponential models:

p(x|θ) = h(x) exp{η⊤T (x) − A(η)}
• For iid data, sufficient statistic is

∑

m T (xm):

ℓ(η;D) = log p(D|η) =

(

∑

m

log h(xm)

)

−MA(η)+

(

η⊤∑

m

T (xm)

)

• Take derivatives and set to zero:
∂ℓ
∂η =

∑

m T (xm) − M
∂A(η)

∂η

⇒ ∂A(η)
∂η = 1

M

∑

m T (xm)

ηML = 1
M

∑

m T (xm)

recalling that the natural moments of an exponential distribution
are the derivatives of the log normalizer.

Basic Statistical Problems

• Let’s remind ourselves of the basic problems we discussed on the
first day: density estimation, clustering classification and regression.

•Density estimation is hardest. If we can do joint density estimation
then we can always condition to get what we want:
Regression: p(y|x) = p(y,x)/p(x)
Classification: p(c|x) = p(c,x)/p(x)
Clustering: p(c|x) = p(c,x)/p(x) c unobserved

Fundamental Operations with Distributions

• Generate data: draw samples from the distribution. This often
involves generating a uniformly distributed variable in the range
[0,1] and transforming it. For more complex distributions it may
involve an iterative procedure that takes a long time to produce a
single sample (e.g. Gibbs sampling, MCMC).

• Compute log probabilities.

When all variables are either observed or marginalized the result is a
single number which is the log prob of the configuration.

• Inference: Compute expectations of some variables given others
which are observed or marginalized.

• Learning.

Set the parameters of the density functions given some (partially)
observed data to maximize likelihood or penalized likelihood.

Learning with Known Model Structure

• In AI the bottleneck is often knowledge acquisition.

• Human experts are rare, expensive, unreliable, slow.

• But we have lots of data.

•Want to build systems automatically based on data and a small
amount of prior information (from experts).

•Many systems we build will be essentially probability models.

• Assume the prior information we have specifies type & structure of
the model, as well as the form of the (conditional) distributions or
potentials.

• In this case learning ≡ setting parameters.

• Also possible to do “structure learning” to learn model.


