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Reminder: Learning with Latent Variables 1

•With latent variables, the probability contains a sum, so the log
likelihood has all parameters coupled together:

ℓ(θ;D) = log
∑

z

p(x, z|θ) = log
∑

z

p(z|θz)p(x|z, θx)

(we can also consider continuous z and replace
∑

with
∫

)

• If the latent variables were observed, parameters would decouple
again and learning would be easy:

ℓ(θ;D) = log p(x, z|θ) = log p(z|θz) + log p(x|z, θx)

•One idea: ignore this fact, compute ∂ℓ/∂θ, and do learning with a
smart optimizer like conjugate gradient.

• Another idea: what if we use our current parameters to guess the
values of the latent variables, and then do fully-observed learning?
This back-and-forth trick might make optimization easier.

Expectation-Maximization (EM) Algorithm 2

• Iterative algorithm with two linked steps:
E-step: fill in values of ẑt using p(z|x, θt).
M-step: update parameters using θt+1← argmax ℓ(θ;x, ẑt).

• E-step involves inference, which we need to do at runtime anyway.
M-step is no harder than in fully observed case.

•We will prove that this procedure monotonically improves ℓ
(or leaves it unchanged). Thus it always converges to a local
optimum of the likelihood (as any optimizer should).

• Note: EM is an optimization strategy for objective functions that
can be interpreted as likelihoods in the presence of missing data.

• EM is not a cost function such as “maximum-likelihood”.
EM is not a model such as “mixture-of-Gaussians”.

Complete & Incomplete Log Likelihoods 3

•Observed variables x, latent variables z, parameters θ:

ℓc(θ;x, z) = log p(x, z|θ)

is the complete log likelihood.

• Usually optimizing ℓc(θ) given both z and x is straightforward.
(e.g. class conditional Gaussian fitting, linear regression)

•With z unobserved, we need the log of a marginal probability:

ℓ(θ;x) = log p(x|θ) = log
∑

z

p(x, z|θ)

which is the incomplete log likelihood.



Expected Complete Log Likelihood 4

• For any distribution q(z) define expected complete log likelihood:

ℓq(θ;x) = 〈ℓc(θ;x, z)〉q ≡
∑

z

q(z|x) log p(x, z|θ)

• Amazing fact: ℓ(θ) ≥ ℓq(θ) +H(q) because of concavity of log:

ℓ(θ;x) = log p(x|θ)

= log
∑

z

p(x, z|θ)

= log
∑

z

q(z|x)
p(x, z|θ)

q(z|x)

≥
∑

z

q(z|x) log
p(x, z|θ)

q(z|x)

•Where the inequality is called Jensen’s inequality.
(It is only true for distributions:

∑

q(z) = 1; q(z) > 0.)

Lower Bounds and Free Energy 5

• For fixed data x, define a functional called the free energy:

F (q, θ) ≡
∑

z

q(z|x) log
p(x, z|θ)

q(z|x)
≤ ℓ(θ)

• The EM algorithm is coordinate-ascent on F :
E-step: qt+1 = argmaxq F (q, θt)

M-step: θt+1 = argmaxθ F (qt+1, θt)

M-step: maximization of expected ℓc 6

• Note that the free energy breaks into two terms:

F (q, θ) =
∑

z

q(z|x) log
p(x, z|θ)

q(z|x)

=
∑

z

q(z|x) log p(x, z|θ)−
∑

z

q(z|x) log q(z|x)

= ℓq(θ;x) +H(q)

(this is where its name comes from)

• The first term is the expected complete log likelihood (energy) and
the second term, which does not depend on θ, is the entropy.

• Thus, in the M-step, maximizing with respect to θ for fixed q we
only need to consider the first term:

θt+1 = argmaxθ ℓq(θ;x) = argmaxθ

∑

z

q(z|x) log p(x, z|θ)

E-step: inferring latent posterior 7

• Claim: the optimim setting of q in the E-step is:

qt+1 = p(z|x, θt)

• This is the posterior distribution over the latent variables given the
data and the parameters. Often we need this at test time anyway
(e.g. to perform classification).

• Proof (easy): this setting saturates the bound ℓ(θ;x) ≥ F (q, θ)

F (p(z|x, θt), θt) =
∑

z

p(z|x, θt) log
p(x, z|θt)

p(z|x, θt)

=
∑

z

p(z|x, θt) log p(x|θt)

= log p(x|θt)
∑

z p(z|x, θt)

= ℓ(θ;x) · 1

• Can also show this result using variational calculus or the fact that
ℓ(θ)− F (q, θ) = KL[q||p(z|x, θ)]



EM Constructs Sequential Convex Lower Bounds 8

• Consider the likelihood function and the function F (qt+1, ·).

θ

likelihood

θt

F(  ,q    )θ t+1

Recap: EM Algorithm 9

• A way of maximizing likelihood function for latent variable models.
Finds ML parameters when the original (hard) problem can be
broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed
data and current parameters.

2. Using this “complete” data, find the maximum likelihood
parameter estimates.

• Alternate between filling in the latent variables using our best guess
(posterior) and updating the paramters based on this guess:
E-step: qt+1 = p(z|x, θt)
M-step: θt+1 = argmaxθ

∑

z q(z|x) log p(x, z|θ)

• In the M-step we optimize a lower bound on the likelihood.
In the E-step we close the gap, making bound=likelihood.

Example: Mixtures of Gaussians 10

• Recall: a mixture of K Gaussians:
p(x|θ) =

∑

k αkN (x|µk, Σk)
ℓ(θ;D) =

∑

n log
∑

k αkN (xn|µk, Σk)

• Learning with EM algorithm:

E− step : pt
kn = N (xn|µt

k, Σ
t
k)

qt+1
kn = p(z=k|xn, θt) =

αt
kp

t
kn

∑

j αt
jp

t
kn

M− step : µt+1
k =

∑

n qt+1
kn xn

∑

n qt+1
kn

Σt+1
k =

∑

n qt+1
kn (xn − µt+1

k )(xn − µt+1
k )⊤

∑

n qt+1
kn

αt+1
k =

1

M

∑

n

qt+1
kn

EM for MOG 11

(a) (c) (d)

L = 1

(e)

L = 4

(f)

L = 6

(g)

L = 8

(h)

L = 10

(i)

L = 12



Derivation of M-step 12

• Expected complete log likelihood ℓq(θ;D):

∑

n

∑

k

qkn

[

log αk −
1

2
(xn − µt+1

k )⊤Σ−1
k (xn − µt+1

k )−
1

2
log |2πΣk|

]

• For fixed q we can optimize the parameters:

∂ℓq
∂µk

= Σ−1
k

∑

n

qkn(xn − µk)

∂ℓq

∂Σ−1
k

=
1

2

∑

n

qkn

[

Σ⊤k − (xn − µt+1
k )(xn − µt+1

k )⊤
]

∂ℓq
∂αk

=
1

αk

∑

n

qkn − λ (λ = M )

• Fact:
∂ log |A−1|

∂A−1 = A⊤ and ∂x⊤Ax
∂A = xx⊤

Compare: K-means 13

• The EM algorithm for mixtures of Gaussians is just like a soft
version of the K-means algorithm.

• In the K-means “E-step” we do hard assignment:

ct+1
n = argmink(xn − µt

k)⊤Σ−1
k (xn − µt

k)

• In the K-means “M-step” we update the means as the weighted
sum of the data, but now the weights are 0 or 1:

µt+1
k =

∑

n[ct+1
k = n]xn

∑

n[ct+1
k = n]

(a) (b) (c) (d) (e) (f)

Partially Hidden Data 14

•Of course, we can learn when there are missing (hidden) variables
on some cases and not on others.

• In this case the cost function was:

ℓ(θ;D) =
∑

complete

log p(xc,yc|θ) +
∑

missing

log
∑

y

log p(xm,y|θ)

• Now you can think of this in a new way: in the E-step we estimate
the hidden variables on the incomplete cases only.

• The M-step optimizes the log likelihood on the complete data plus
the expected likelihood on the incomplete data using the E-step.

A Report Card for EM 15

• Some good things about EM:

– no learning rate parameter

– very fast for low dimensions

– each iteration guaranteed to improve likelihood

– adapts unused units rapidly

• Some bad things about EM:

– can get stuck in local minima

– both steps require considering all explanations of the data which
is an exponential amount of work in the dimension of θ

• EM is typically used with mixture models, for example mixtures of
Gaussians or mixtures of experts. The “missing” data are the labels
showing which sub-model generated each datapoint.
Very common: also used to train HMMs, Boltzmann machines, ...



Variants 16

• Sparse EM:
Do not recompute exactly the posterior probability on each data
point under all models, because it is almost zero.
Instead keep an “active list” which you update every once in a
while.

• Generalized (Incomplete) EM: It might be hard to find the ML
parameters in the M-step, even given the completed data. We can
still make progress by doing an M-step that improves the likelihood
a bit (e.g. gradient step).


