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EXPECTATION-MAXIMIZATION (EM) ALGORITHM

2

o [terative algorithm with two linked steps:
E-step: fill in values of 2! using p(z|x, 6").
M-step: update parameters using git+l — argmax £(6; x, zh).
e E-step involves inference, which we need to do at runtime anyway.
M-step is no harder than in fully observed case.

o We will prove that this procedure monotonically improves ¢
(or leaves it unchanged). Thus it always converges to a local
optimum of the likelihood (as any optimizer should).

e Note: EM is an optimization strategy for objective functions that
can be interpreted as likelihoods in the presence of missing data.

e EM is not a cost function such as “maximum-likelihood” .
EM is not a model such as “mixture-of-Gaussians”.

REMINDER: LEARNING WITH LATENT VARIABLES 1

e With latent variables, the probability contains a sum, so the log
likelihood has all parameters coupled together:

0(6;D) = log Zp(x, z|6) = log Zp(zh%)p(x\z, 0z)

(we can also consider continuous z and replace > with [)

o If the latent variables were observed, parameters would decouple
again and learning would be easy:

((0; D) = log p(x, z|f) = log p(z|0.) + log p(x|z, 0z)
e One idea: ignore this fact, compute 9¢/00, and do learning with a
smart optimizer like conjugate gradient.

e Another idea: what if we use our current parameters to guess the
values of the latent variables, and then do fully-observed learning?
This back-and-forth trick might make optimization easier.

COMPLETE & INCOMPLETE LOG LIKELIHOODS

e Observed variables x, latent variables z, parameters 0:
le(0:x,2) = log p(x, z|0)
is the complete log likelihood.

e Usually optimizing ¢.(0) given both z and x is straightforward.
(e.g. class conditional Gaussian fitting, linear regression)

e With z unobserved, we need the log of a marginal probability:
£0: %) = log p(x9) = log > p(x, z[6)
VA

which is the incomplete log likelihood.




EXPECTED COMPLETE LOG LIKELIHOOD

e For any distribution ¢(z) define expected complete log likelihood:

ly(0;x) = (Le(0:%x,2)) g = Z q(z|x) log p(x,z|0)
z
o Amazing fact: £(0) > (4(0) + H(q) because of concavity of log

£(0;x) = log p(x|0)

= log Z p(x,z|0)

= log Z Q(z|x)p4(X’ zlf) /

q(z|x) /
>Zq z|x) log }((|ZX‘)9)

M-STEP: MAXIMIZATION OF EXPECTED /. 6

e Note that the free energy breaks into two terms:

p(x,z|0)
=X alebe)log © o

= Zq (z]x) log p(x, z|0) — Zq (z[x) log ¢(z|x)
:gq(e;x)+H( )

(this is where its name comes from)

e The first term is the expected complete log likelihood (energy) and
the second term, which does not depend on 6, is the entropy.

e Thus, in the M-step, maximizing with respect to 6 for fixed g we
only need to consider the first term:

t+1 _
e Where the inequality is called Jensen's inequality. 0 = argmaxg (q(0; x) = argmaxy Z (z]x) log p(x, 2(0)
(It is only true for distributions: > ¢(z) =1; ¢(z) > 0.) z
LOWER BOUNDS AND FREE ENERGY E-STEP: INFERRING LATENT POSTERIOR 7

o For fixed data x, define a functional caIIed the free energy:

= > ateflon” ‘X’f) < 0(6)

e The EM algorithm is coordinate-ascent on F™:

E-step: ¢t = argmax, F(q,0")
M-step: g+l — argmaxy F(q“‘l,ﬁt)
(=4
F@e)

QU

e Claim: the optimim setting of ¢ in the E-step is:
t+1 t
¢ = plalx,0")
e This is the posterior distribution over the latent variables given the

data and the parameters. Often we need this at test time anyway
(e.g. to perform classification).

e Proof (easy): this setting saturates the bound ¢(6;x) > F(q,0)

), ot h p(x, z|0")
F(p(z|x,0),0% Zp \X@log(b{af)

= Zp z|x,6") log p(x|¢")
Z

= log p(x[0") 3>, p(z|x, 6")

— ((0;x) - 1

e Can also show this result using variational calculus or the fact that

((0) = F(g,0) = KL{g|[p(zx, 0)]




EM CONSTRUCTS SEQUENTIAL CONVEX LOWER BOUNDS 8 EXAMPLE: MIXTURES OF GAUSSIANS 10
o Consider the likelihood function and the function F/(¢/*1, ). o Recall: a mixture of K Gaussians:
likelihood p(x0) = 3, apN (x| g, Zi)
A
( D) =3, log > N (x| g, 2)
f e Learning with EM algorithm:
E —step : P, = N (x|, 51
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REcAP: EM ALGORITHM 9 EM ror MOG 11
e A way of maximizing likelihood function for latent variable models. L=1 . L=4

Finds ML parameters when the original (hard) problem can be
broken up into two (easy) pieces:

1. Estimate some “missing” or “unobserved” data from observed
data and current parameters.

2. Using this “complete” data, find the maximum likelihood
parameter estimates.

e Alternate between filling in the latent variables using our best guess
(posterior) and updating the paramters based on this guess:
E-step: ¢/t = p(z|x, 6"

M-step: 0/ = argmaxy 3, q(z]x) log p(x, z|0)

e In the M-step we optimize a lower bound on the likelihood.

In the E-step we close the gap, making bound=likelihood.
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DERIVATION OF M-STEP 12

e Expected complete log likelihood £4(6; D):
1 _ 1
SN g {log ap — 5(x" = ph TS (! — ) - 5108 \27@/«!]
nok

e For fixed ¢ we can optimize the parameters:

ol
—L=x Z Qen (X" — p1g)

O
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o Fact: AT

PARTIALLY HIDDEN DATA 14

e Of course, we can learn when there are missing (hidden) variables
on some cases and not on others.

e In this case the cost function was:
(6:D) = > logp(x’y“lo)+ > 10g210gp ", yl6)
complete missing

e Now you can think of this in a new way: in the E-step we estimate
the hidden variables on the incomplete cases only.

e The M-step optimizes the log likelihood on the complete data plus
the expected likelihood on the incomplete data using the E-step.

COMPARE: K-MEANS 13

e The EM algorithm for mixtures of Gaussians is just like a soft
version of the K-means algorithm.

e In the K-means “E-step” we do hard assignment:

= argming, (x" — M%)ngl(xn —ub)

e In the K-means “M-step” we update the means as the weighted
sum of the data, but now the weights are 0 or 1:

1 ]
1 _ Ll = nlx”
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A REPORT CARD FOR EM 15

e Some good things about EM:
—no learning rate parameter
— very fast for low dimensions
—each iteration guaranteed to improve likelihood
—adapts unused units rapidly
e Some bad things about EM:

—can get stuck in local minima

—both steps require considering all explanations of the data which
is an exponential amount of work in the dimension of

e EM is typically used with mixture models, for example mixtures of
Gaussians or mixtures of experts. The “missing” data are the labels
showing which sub-model generated each datapoint.

Very common: also used to train HMMs, Boltzmann machines, ...




VARIANTS 16

e Sparse EM:

Do not recompute exactly the posterior probability on each data
point under all models, because it is almost zero.

Instead keep an “active list” which you update every once in a
while.

e Generalized (Incomplete) EM: It might be hard to find the ML
parameters in the M-step, even given the completed data. We can
still make progress by doing an M-step that improves the likelihood
a bit (e.g. gradient step).




