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e If variables are occasionally unobserved they are missing data.
e.g. undefinied inputs, missing class labels, erroneous target values
e In this case, we can still model the joint distribution, but we define
a new cost function in which we sum out or marginalize the missing
values at training or test time:

(6:D) = > logp(x®y°lo) + > logp(x"|6)

complete missing
= > logp(x“yl0)+ > logZp ", y16)
complete missing

[Recall that p(z) = >, p(z,q).]

UNOBSERVED VARIABLES 1

LATENT VARIABLES 3

e Certain variables ) in our models may be unobserved,
either some of the time or always,
either at training time or at test time.
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Graphically, we will use shading to indicate observation.

e What to do when a variable z is always unobserved?
Depends on where it appears in our model. If we never condition on
it when computing the probability of the variables we do observe,
then we can just forget about it and integrate it out.
e.g. given y, x fit the model p(z,y|x) = p(z|y)p(y|x, w)p(w).
(In other words if it is a leaf node.)

e But if z is conditioned on, we need to model it;
e.g. given y, x fit the model p(y|x) = >, p(y|x, z)p(z)
z




WHERE Do LATENT VARIABLES COME FrROM? 4

e Latent variables may appear naturally, from the structure of the
problem, because something wasn't measured, because of faulty
sensors, occlusion, privacy, etc.

e But also, we may want to intentionally introduce latent variables to
model complex dependencies between variables without looking at
the dependencies between them directly.

This can actually simplify the model (e.g. mixtures).
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WHY 1S LEARNING HARDER? 6

e In fully observed iid settings, the probability model is a product
thus the log likelihood is a sum where terms decouple.
(At least for directed models.)

((0; D) = log p(x, z|0)
= logp(z]0,) + log p(x|z, 0

e With latent variables, the probability already contains a sum, so the
log likelihood has all parameters coupled together via log > ():

00;D) = IogZp()g z|0)
= logZp(z\Gz)p(xh, 0z)

(Just as with the partition function in undirected models.)

CLUSTERING VS. CLASSIFICATION
LATENT FACTOR MODELS VS. REGRESSION 5

LEARNING WITH LATENT VARIABLES 7

e You can think of clustering as the problem of classification
with missing class labels.
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e You can think of factor models (such as factor analysis, PCA, ICA,
etc.) as linear or nonlinear regression with missing inputs.

e Likelihood ¢(8; D) =log ), p(z|0)p(x|z, 8;:) couples parameters:
Z

z

o o

Xy Xz X3 Xy X2 X3

(CY (b)

e We can treat this as a black box probability function and just try to
optimize the likelihood as a function of # (e.g. gradient descent).
However, sometimes taking advantage of the latent variable
structure can make parameter estimation easier.

e Good news: soon we will see the EM algorithm which allows us to
treat learning with latent variables using fully observed tools.

e Basic trick: guess the values you don't know.
Basic math: use convexity to lower bound the likelihood.




MIXTURE MODELS 8

CLUSTERING EXAMPLE: GAUSSIAN MIXTURE MODELS 10

e Most basic latent variable model with a single discrete node z.

e Allows different submodels (experts) to contribute to the
(conditional) density model in different parts of the space.

e Divide and conquer idea: use simple parts to build complex models.

(e.g. multimodal densities, or piecewise-linear regressions).
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e Consider a mixture of K Gaussian components:

p(x|0) = Z apN (x| g, Zgp)

B _ OékN(Xm;g,Zk)
ple =k 0) = o o N el 20)

= log ) " N (X" |y, )
n k
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e Density model: p(z|0) is a familiarity signal.
Clustering: p(z|x,0) is the assignment rule, —¢(0) is the cost.

MIXTURE DENSITIES 9

REGRESSION EXAMPLE: MIXTURES OF EXPERTS 11

e Exactly like a classification model but the class is unobserved and
so we sum it out. What we get is a perfectly valid density:

p(x]0) = }:pz_m@)@p_kew
= Z agpg(x|0k)
k

where the “mixing proportions” add to one: >, ap = 1.

e We can use Bayes' rule to compute the posterior probability of the
mixture component given some data:
Py (|0

Z] 7p](x|6’ )

these quantities are called responsibilities.

plz = k|x,0) =

e Also called conditional mixtures. Exactly like a class-conditional
model but the class is unobserved and so we sum it out again:
K

p(ylx,0) =Y plz = kx, 02)p(y|z = k,x, 6))
k=1

=) ap(x|02)py(ylx, 0p)
K

where >, ap(x) =1 Vx.
e Harder: must learn a(x) (unless chose z independent of x).

e We can still use Bayes' rule to compute the posterior probability of
the mixture component given some data:
a(X)p(y X, 0))
Z] 04] p] (y]x, 0 )
this function is often called the gating function.

p(z = klx,y,0) =




EXAMPLE: MIXTURE OF LINEAR REGRESSION EXPERTS 12

e Each expert generates data according to a linear function of the
input plus additive Gaussian noise:

plylx,0) = Zak y|ﬁkx Uk;)

e The “gate” function can be a softmax classification machine:
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e Remember: we are not modeling the density of the inputs x.

ap(x) = p(z = klx) =
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PARAMETER CONSTRAINTS 14

e If we want to use general optimizations (e.g. conjugate gradient) to
learn latent variable models, we often have to make sure parameters
respect certain constraints. (e.g. > ;. o = 1, ¥, pos.definite).

e A good trick is to reparameterize these quantities in terms of
unconstrained values. For mixing proportions, use the softmax:

exp(qp)
> exp(gj)
e For covariance matrices, use the Cholesky decomposition:
=44
272 =TT Aa

where A is upper diagonal with positive diagonal:

Q. =

Aj=exp(ry)) >0 Ajy=a; (>4 Ay=0 (j<i

GRADIENT LEARNING WITH MIXTURES 13

e We can learn mixture densities using gradient descent on the
likelihood as usual. The gradients are quite interesting:

((6) = log p(x|6) = log Y _ cpp(x|0r)

k
o 1 Ipi(x[0)
o0 (x\e)zo‘k‘ 0

0log pr.(x|0
x|6y) k( 10k)

_Zk

B pr(x|0) 0
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e In other words, the gradient is the responsibility weighted sum of
the individual log likelihood gradients.

Loasum 15

e Often you can easily compute b;. = log p(x|z = k, 0},),
but it will be very negative, say -10° or smaller.

e Now, to compute ¢ = log p(x|#) you need to compute log > ;. ek
(e.g. for calculating responsibilities at test time or for learning)

e Carefull Do not compute this by doing log(sum(exp(b))).
You will get underflow and an incorrect answer.

o Instead do this:

— Add a constant exponent B to all the values b;, such that the
largest value comes close to the maxiumum exponent allowed by
machine precision: B = MAXEXPONENT-1log(K)-max (b).

— Compute log(sum(exp(b+B)))-B.

e Example: if logp(z|z = 1) = —120 and log p(z|z = 2) = —120,

what is log p(z) = log [p(z|z = 1) + p(x|z = 2)]?

Answer: log[2e™12] = —120 + log 2.




