
CSC412 – Probabilistic Learning & Reasoning Sam Roweis

Lecture 7:

Fully Observed Trees

February 1, 2006

Directed Tree Graphical Models 1

•Directed trees are DAGMs in which each variable xi has exactly one
other variable as its parent xπi except the “root” xroot which has
no parents. Thus, the probability of a variable taking on a certain
value depends only on the value of its parent:

p(x) = p(xroot)
∏

i 6=root

p(xi|xπi)

• Trees are the next step up from assuming independence.
Instead of considering variables in isolation, consider them in pairs.

NB: each node (except root) has
exactly one parent, but nodes
may have more than one child.
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Undirected Tree Graphical Models 2

• Undirected trees are connected, acyclic graphs with exactly (D-1)
edges if there are D nodes (variables).

• For undirected trees, the cliques are all pairs of connected nodes.

p(x) =
1

Z

∏

i

ψi(xi, xπi)

where we can make Z = 1 with the choice ψi = p(xi|xπi) except
for one clique involving the root: ψj = p(xr)p(xj|xπj)

• Trees have no “explaining-away” (converging arrows).
Therefore, d-separation and regular separation are equivalent.

•Directed and undirected trees are equivalent and the choice of root
is arbitrary (for fully observed models).

• Another characterization of trees: there is exactly one path between
any pair of nodes (without doubling back).

Likelihood function 3

• Notation:
yi ≡ a node xi and its single parent xπi.
Vi ≡ set of joint configurations of node i and its parent xπi
(yroot ≡ xroot and Vroot ≡ vroot)

•Directed model likelihood:

ℓ(θ;D) =
∑

n

log p(xn) =
∑

n



log pr(x
n
r ) +

∑

i 6=r

log p(xi
n|xπi

n)





=
∑

n

∑

i

∑

v∈Vi

[yni = v] log pi(v) indicator trick

=
∑

i

∑

v∈Vi

Ni(v) log pi(v)

where Ni(v) =
∑

n[y
n
i = v] and pi(vi) = p(xi|xπi).



More on the Likelihood function 4

• Undirected model likelihood:

ℓ(θ;D) =
∑

n

log
∏

i

ψi(y
n
i )

=
∑

n

∑

i

∑

v∈Vi

[yni = v] logψi(v)

=
∑

i

∑

v∈Vi

Ni(v) logψi(v)

where Ni(y) =
∑

n[y
n
i = y] and ψi(yi) = p(xi|xπi).

(Except for one clique involving the root: ψj = p(xr)p(xj|xπj))

•Directed and undirected likelihoods are the same!

• Trees are in the exponential family with yi as sufficient statistics.

Maximum Likelihood Parameters Given Structure 5

• Trees are just a special case of fully observed graphical models.

• For discrete data xi with values vi, each node stores a conditional
probability table (CPT) over its values given its parent’s value.
The ML parameter estimates are just the empirical histograms of
each node’s values given its parent:

p∗(xi = vi|xπi = vj) =
N (xi = vi, xπi = vj)

∑

vi
N (xi = vi, xπi = vj)

=
Ni(yi)

Nπi(vj)

except for the root which uses marginal counts Nr(vr)/N .

• For continuous data, the most common model is a two-dimensional
Gaussian at each node. The ML parameters are just to set the
mean of pi(yi) to be the sample mean of [xi;xπi] and the
covariance matrix to the sample covariance.

• In practice we should use some kind of smoothing/regularization.

Structure Learning 6

•What about the tree structure (links)?
How do we know which nodes to make parents of which?
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• Bold idea: how can we also learn the optimal structure?
In principle, we could search all combinatorial structures, for each
compute the ML parameters, and take the best one.

• But is there a better way? Yes. It turns out that structure learning
in tree models can be converted to a good old computer science
problem: maximum weight spanning tree.

Optimal Structure 7

• Let us rewrite the likelihood function:

ℓ(θ;D) =
∑

x∈Vall

N(x) log p(x)

=
∑

x

N(x)



log p(xr) +
∑

i 6=r

log p(xi|xπi)





•ML parameters, are equal to the observed frequency counts q(·):

ℓ∗

N
=

∑

x∈Vall

q(x)



log q(xr) +
∑

i 6=r

log q(xi|xπi)





=
∑

x

q(x)



log q(xr) +
∑

i 6=r

log
q(xi, xπi)

q(xπi)





=
∑

x

q(x)
∑

i 6=r

log
q(xi, xπi)

q(xi)q(xπi)
+

∑

x

q(x)
∑

i

log q(xi)

• NB: second term does not depend on structure.



Edge Weights 8

• Each term in sum i 6= r corresponds to an edge from i to its parent.
ℓ∗

N
=

∑

x

q(x)
∑

i 6=r

log
q(xi, xπi)

q(xi)q(xπi)
+ C

=
∑

i 6=r

∑

xi,xπi

q(xi, xπi) log
q(xi, xπi)

q(xi)q(xπi)
+ C

=
∑

i 6=r

∑

yi

q(yi) log
q(yi)

q(xi)q(xπi)
+ C

=
∑

i 6=r

W (i;πi) + C

where the edge weights W are defined by mutual information:

W (i; j) =
∑

xi,xj

q(xi, xj) log
q(xi, xj)

q(xi)q(xj)

• So overall likelihood is sum of weights on edges that we use.
We need the maximum weight spanning tree.

Kruskal’s algorithm (Greedy Search) 9

• To find the maximum weight spanning tree A on a graph with
nodes U and weighted edges E:

1.A← empty

2. Sort edges E by nonincreasing weight: e1, e2, . . . , eK .

3. for k = 1 to K {A +=ek unless doing so creates a cycle}
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Maximum Likelihood Trees 10

We can now completely solve the tree learning problem:

1. Compute the marginal counts q(xi) for each node
and pairwise counts q(xi, xj) for all pairs of nodes.

2. Set the weights to the mutual informations:

W (i; j) =
∑

xi,xj

q(xi, xj) log
q(xi, xj)

q(xi)q(xj)

3. Find the maximum weight spanning tree A=MWST(W ).

4. Using the undirected tree A chosen by MWST, pick a root
arbitrarily and orient the edges away from the root.
Set the conditional functions to the observed frequencies:

p(xi|xπi) =
q(xi, xπi)

∑

xi
q(xi, xπi)

=
q(xi, xπi)

q(xπi)

Notes 11

• Any directed tree consistent with the undirected tree found by the
algorithm above will assign the same likelihood to any dataset.

• Amazingly, as far as likelihood goes, the root is arbitrary.
We can just pick one node and orient the edges away from it.
Or we can work with undirected models.

• For continuous nodes (e.g. Gaussian), the situation is similar,
except that computing the mutual information requires an integral.

•Mutual information is the Kullback-Leibler divergence
(cross-entropy) between a distribution and the product of its
marginals. Measures how far from independent the joint
distribution is.

W (i; j) = I[xi;xj] = KL[q(xi, xj)‖q(xi)q(xj)]
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