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LECTURE 7:

FuLry OBSERVED TREES

February 1, 2006

UNDIRECTED TREE GRAPHICAL MODELS 2

e Undirected trees are connected, acyclic graphs with exactly (D-1)
edges if there are D nodes (variables).

e For undirected trees, the cliques are all pairs of connected nodes.
1
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where we can make Z = 1 with the choice v; = p(z;|z;) except
for one clique involving the root: t; = p(xr)p(zj|zr;)

e Trees have no “explaining-away” (converging arrows).
Therefore, d-separation and regular separation are equivalent.

e Directed and undirected trees are equivalent and the choice of root
is arbitrary (for fully observed models).

o Another characterization of trees: there is exactly one path between
any pair of nodes (without doubling back).

DIRECTED TREE GRAPHICAL MODELS 1

o Directed trees are DAGMs in which each variable x; has exactly one
other variable as its parent x;; except the “root” Zyoot which has
no parents. Thus, the probability of a variable taking on a certain
value depends only on the value of its parent:

p(x) = p(Troot) H p(‘ri‘xﬂ'i)
1#root

e Trees are the next step up from assuming independence.
Instead of considering variables in isolation, consider them in pairs.

X

Ql\"\ O™
NB: each node (except root) has /

exactly one parent, but nodes Yon
may have more than one child.

LIKELIHOOD FUNCTION 3

e Notation:
yi = a node x; and its single parent ..
V; = set of joint configurations of node 7 and its parent zr;
(Y100t = Troot and Vigot = Vioot)

e Directed model likelihood:

— Zlogp(xn) = Z log pr(x;!) + 210 pla; |$7rz )

n i#r
- ZZ Z v]log p;(v) indicator trick
1 VEV;
= Z > Ni(v)logpi(v)
i vEV;

where N;(v) = >, [y! = v] and p;(v;) = p(z;|zr,).




MORE ON THE LIKELIHOOD FUNCTION 4

e Undirected model likelihood:

:ZlogH% y7)
—ZZ Z v]log ¥(v)

1 VEV;
= Z D Ni(v)log v(v)
1 veV;

where N;(y) = >, [y} =y] and ¥;(y;) = p(xi|zr,).
(Except for one clique involving the root: 1; = p(x7-)p(:13j|x7rj))

e Directed and undirected likelihoods are the same!

e Trees are in the exponential family with y; as sufficient statistics.

STRUCTURE LEARNING 6

e What about the tree structure (links)?
How do we know which nodes to make parents of which?

N
cANCY

e Bold idea: how can we also learn the optimal structure?
In principle, we could search all combinatorial structures, for each
compute the ML parameters, and take the best one.

e But is there a better way? Yes. It turns out that structure learning
in tree models can be converted to a good old computer science
problem: maximum weight spanning tree.

MAXIMUM LIKELIHOOD PARAMETERS GIVEN STRUCTURE b5

OPTIMAL STRUCTURE 7

e Trees are just a special case of fully observed graphical models.

e For discrete data x; with values v;, each node stores a conditional
probability table (CPT) over its values given its parent’s value.
The ML parameter estimates are just the empirical histograms of
each node's values given its parent:

N(z; = v, 2r = v; No(v
P*(%Zwlﬂwzvj)zz i = 0i oms = 0j)__ Nilyi)
Vi

N(z; = vj, xr; = vj) N Nﬁi(vj)
except for the root which uses marginal counts Ny (v,)/N.

e For continuous data, the most common model is a two-dimensional
Gaussian at each node. The ML parameters are just to set the
mean of p;(y;) to be the sample mean of [z;; x7,] and the
covariance matrix to the sample covariance.

e In practice we should use some kind of smoothing/regularization.

e Let us rewrite the likelihood function:

09;D) = Z N(x)log p(x)

xeVyy

=SNG0 { logpl) + 3 lomplala)

i#r

e ML parameters, are equal to the observed frequency counts ¢(-):

E*
= 2 a0 [ logalx) + Y logataifer)

xeV i#r

= Zq(x) log q(x, —O—Zl I“IT’

z;ér
=>4 log ot T’ Z )2 logatx)
X i#r
o NB: second term does not depend on structure.




EDGE WEIGHTS 8

e Each term in sum ¢ # 7 corresponds to an edge from i to its parent.
* xL Ir,
= e D sl

—zz@%mWw>c

Pl q(zi)q(xr,)
(y2)
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where the edge weights W are defined by mutual information:

(ﬂj“mJ)
Z q 1727177 log ———— q(z

20T i)q(z;)

e So overall likelihood is sum of weights on edges that we use.
We need the maximum weight spanning tree.

MAXIMUM LIKELIHOOD TREES 10

We can now completely solve the tree learning problem:

1. Compute the marginal counts ¢(z;) for each node
and pairwise counts ¢(x;, ZL’j) for all pairs of nodes.

2. Set the weights to the mutual informations:

z;, ;)10 (x“:c])
;Jq i) log ol D

3. Find the maximum weight spanning tree A=MWST (/).

4. Using the undirected tree A chosen by MWST, pick a root
arbitrarily and orient the edges away from the root.
Set the conditional functions to the observed frequencies:
q('x%xﬂ'z) Q(xiaxﬂ'z‘)

Z Q(xul’m) Q(mm)

p(xi|rn;) =

KRUSKAL’S ALGORITHM (GREEDY SEARCH) 9

e To find the maximum weight spanning tree A on a graph with
nodes U and weighted edges £
1. A «— empty
2. Sort edges E by nonincreasing weight: eq,eo, ..., e
3.for k=1to K {A +=ej unless doing so creates a cycle}

NOTES 11

e Any directed tree consistent with the undirected tree found by the
algorithm above will assign the same likelihood to any dataset.

e Amazingly, as far as likelihood goes, the root is arbitrary.
We can just pick one node and orient the edges away from it.
Or we can work with undirected models.

e For continuous nodes (e.g. Gaussian), the situation is similar,
except that computing the mutual information requires an integral.

e Mutual information is the Kullback-Leibler divergence
(cross-entropy) between a distribution and the product of its

marginals. Measures how far from independent the joint
distribution is.

W (i; j) = l[zg; v ] = KL[g(z4, 2j)|lq(x;)q(z ;)]
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