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FUNDAMENTAL OPERATIONS 2

e What can we do with a probabilistic graphical model?

e Generate data.
For this you need to know how to sample from local models
(directed) or how to do Gibbs or other sampling (undirected).

e Compute log probabilities.
When all nodes are either observed or marginalized the result is a
single number which is the log prob of the configuration.

e Inference.
Compute expectations of some nodes given others which are
observed or marginalized.

e Learning. (today)
Set the parameters of the local functions given some (partially)
observed data to maximize the probability of seeing that data.

BASIC STATISTICAL PROBLEMS 1

e Let's remind ourselves of the basic problems we discussed on the
first day: density estimation, clustering classification and regression.

e Can always do joint density estimation and then condition:
Regression: p(y|x) = p(y,x)/p(x) = p(y,x)/ [ p(y,x)dy
Classification: p(c|x) = p(c,x)/p(x) = p(c,x)/>_.plc,x)
Clustering: p(c|x) = p(c,x)/p(x) ¢ unobserved
Density Estimation: p(y|x) = p(y,x)/p(x) x unobserved

If certain nodes are always unob-

served they are called hidden or

latent variables (more later):

/

Y X

Clustering/Density Est.

In general, if certain nodes are
always observed we may not

want to model their density:
X

Regression/Classification

LEARNING GRAPHICAL MODELS FROM DATA 3

e In Al the bottleneck is often knowledge acquisition.

e Human experts are rare, expensive, unreliable, slow.
But we have lots of machine readable data.

e Want to build systems automatically based on data and a small
amount of prior information (e.g. from experts).
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e In this course, our “systems” will be probabilistic graphical models.

e Assume the prior information we have specifies type & structure of
the GM, as well as the mathematical form of the parent-conditional
distributions or clique potentials.

e In this case learning = setting parameters.
(“Structure learning” is also possible but we won't consider it now.)




MULTIPLE OBSERVATIONS, COMPLETE IID DATA 4

e A single observation of the data X is rarely useful on its own.

e Generally we have data including many observations, which creates
a set of random variables: D = {x',x?, ... ,XM}

e We will assume two things:

1. Observations are independently and identically distributed
according to joint distribution of graphical model: [ID samples.

2. We observe all random variables in the domain on each
observation: complete data.

e We shade the nodes in a graphical model to indicate they are
observed. (Later you will see unshaded nodes corresponding to
missing data or latent variables.)

Xy Xz X

Xn

MAaXiIMUM LIKELIHOOD 6

e For IID data, the log likelihood is a sum of identical functions:

p(DI0) = [ [ p(x"16)

m

((6:D) =Y " log p(x™|0)

e Idea of maximum likelihod estimation (MLE): pick the setting of
parameters most likely to have generated the data we saw:

* : .
Oy, = argmaxy £(0;D)
e Very commonly used in statistics.
Often leads to “intuitive”, “appealing”, or “natural” estimators.

e For a start, the |[ID assumption makes the log likelihood into a sum,
so its derivative can be easily taken term by term.

LIKELIHOOD FUNCTION 5

e So far we have focused on the (log) probability function p(x|6)
which assigns a probability (density) to any joint configuration of
variables x given fixed parameters 6.

e But in learning we turn this on its head: we have some fixed data
and we want to find parameters.

e Think of p(x|#) as a function of @ for fixed x:
L(0;x) = p(x]0)
((0;x) = log p(x]0)
This function is called the (log) “likelihood” .
e Chose 6 to maximize some cost function ¢(6) which includes ¢(6):

c(6) = £(6; D)

(also cross-validation, Bayesian estimators, BIC, AIC, ...)

SUFFICIENT STATISTICS 7

maximum likelihood (ML)
c(0) =0(0;D) +r(0) maximum a posteriori (MAP)/penalizedML

e A statistic is a (possibly vector valued) function of a (set of)
random variable(s).

o I'(X) is a “sufficient statistic” for X if
T(x)=Tx% = L#:x")=L0:x") Vo
e Equivalently (by the Neyman factorization theorem) we can write:
p(x]0) = h(x,T(x)) g (T'(x),0)
e Example: exponential family models:

p(x|0) = h(x) exp{n' T(x) — A(n)}

O




EXAMPLE: BERNOULLI TRIALS

EXAMPLE: UNIVARIATE NORMAL
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o We observe M iid coin flips: D=H,H, T H,...
e Model: p(H) =0 p(T)=(1-20)
e Likelihood:
£(0; D) = log p(DI0)
= logH ox" (1-— 0)1_Xm

m

= log 0 me + log(1 — 0) Z(l —x")
m

m

= log ONy + log(1 — @) N

e Take derivatives and set to zero:
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e We observe M iid real samples: D=1.18,-.25,.78,. ..
o Model: p(z) = (2702) /2 exp{—(z — p)?/20%}
o Likelihood (using probability density):
((6:D) = log p(D6)
M o I @™ = p)?
= —71Og(27{0_ ) — 52 T
m
e Take derivatives and set to zero:
g_ﬁ = (1/02) Zm(Im — )
% = —%12 + %,4 > (@m — 1)
= pnr = (1/M) 32, am
U]%[L = (1/M) Zm x72n - N%{L

EXAMPLE: MULTINOMIAL

EXAMPLE: UNIVARIATE NORMAL
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e We observe M iid die rolls (K-sided): D=3,1K.2,...
e Model: p(k) =0, > .0, =1
e Likelihood (for binary indicators [x"" = k|):
((0;D) = log p(D|0)
= log H Oxm = log H ng’m:l} e 0}[3(””’:14:]

m m
= Zlog@k Z[Xm =k = ZNklogGk
k m k

e Take derivatives and set to zero (enforcing > ;. 6. = 1):
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EXAMPLE: LINEAR REGRESSION 12

e At a linear regression node, some parents (covariates/inputs) and
all children (responses/outputs) are continuous valued variables.

e For each child and setting of discrete parents we use the model:
plylx, 0) — gauss(y]0x, 02)

e The likelihood is the familiar “squared error’ cost:
U6;D) = —— Z —0'x")?
e The ML parameters can be solved for using linear least-squares:
ot m T 1M\ M
5= ;(y —0'x")x
= 05 = (X'X)"IXTY

o Sufficient statistics are input correlation matrix and input-output
cross-correlation vector.

SUFFICIENT STATISTICS ARE SUMS 14

e In the examples above, the
sufficient statistics were merely
sums (counts) of the data:
Bernoulli: # of heads, tails

X T(X) 0

O—0@—0

Multinomial: # of each type €)

Gaussian: mean, mean-square

Regression: correlations X T(X) 0
o As we will see, this is true for all Q‘—O‘—Q

exponential family models: (b)

sufficient statistics are the

average natural parameters. X T(X) 0

e Only™ exponential family models
have simple sufficient statistics.

O—0—0

©

EXAMPLE: LINEAR REGRESSION 13

MLE rFor DIRECTED GMS 15

e For a directed GM, the likelihood function has a nice form:

log p(D|f) = logHHp 7%, 0) Zzlogp 7|, 6)

e The parameters decouple; so we can
maximize likelihood independently for

each node's function by setting ;. X
e Only need the values of x; and its % . @
parents in order to estimate 6;. i ?
e Furthermore, if x;, X7, have sufficient X Xs @)
Xz X

statistics only need those.

e In general, for fully observed data if we x. O\ /O

know how to estimate params at a single
node we can do it for the whole network.




ExXAMPLE: A DIRECTED MODEL 16

e Consider the distribution defined by the DAGM:
p(x]0) = p(x1|01)p(x2[x1, O2)p(x3|x1, 03)p(X4|x2, X3, 04)
e This is exactly like learning four separate small DAGMs, each of

which consists of a node and its parents (not its Markov blanket).
Xy

@
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MLE FOR GENERAL EXPONENTIAL FAMILY MODELS 18

o Recall the probability function for models in the exponential family:
p(x0) = h(x) exp{n' T(x) — A(n)}

e For iid data, the sufficient statistic vector is >, T'(x

((n; D) =log p(Dly) = <Zlogh > +<?7TZT(X’”))

e Take derivatives and set to zero:
m J0A(n)
87] ZW - M on
0A(n) m
= on ]U Z (™)

ML = 77 2o T(x™)
recalling that the natural moments of an exponential distribution
are the derivatives of the log normalizer.

m):

MLE FOR MULTINOMIAL NETWORKS 17

e Assume our DAGM contains only discrete nodes, and we use the
(general) multinomial form for the conditional probabilities.

o Sufficient statistics involve counts of joint settings of x;, Xr,
summing over all other variables in the table.

o Likelihood for these special “fully observed multinomial networks”:

0(0:D) = log | [ p(x}"|xx,", 0;)

m,i
. X17X7T
= log H p(Xi|X7ri79i)N(X“X7Tz = log H gxl\xﬂ
,X, X, 0%, X
- Z Z N(xi,xm)logﬁxﬂxm
) XiaXTF/L‘

=0 =
Xi[Xr; N(Xr,)




