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Basic Statistical Problems 1

• Let’s remind ourselves of the basic problems we discussed on the
first day: density estimation, clustering classification and regression.

• Can always do joint density estimation and then condition:
Regression: p(y|x) = p(y,x)/p(x) = p(y,x)/

∫

p(y,x)dy
Classification: p(c|x) = p(c,x)/p(x) = p(c,x)/

∑

c p(c,x)
Clustering: p(c|x) = p(c,x)/p(x) c unobserved
Density Estimation: p(y|x) = p(y,x)/p(x) x unobserved

In general, if certain nodes are
always observed we may not
want to model their density:

Y

X

Regression/Classification

If certain nodes are always unob-
served they are called hidden or
latent variables (more later):

X

Z

Clustering/Density Est.

Fundamental Operations 2

•What can we do with a probabilistic graphical model?

• Generate data.
For this you need to know how to sample from local models
(directed) or how to do Gibbs or other sampling (undirected).

• Compute log probabilities.

When all nodes are either observed or marginalized the result is a
single number which is the log prob of the configuration.

• Inference.

Compute expectations of some nodes given others which are
observed or marginalized.

• Learning. (today)
Set the parameters of the local functions given some (partially)
observed data to maximize the probability of seeing that data.

Learning Graphical Models from Data 3

• In AI the bottleneck is often knowledge acquisition.

• Human experts are rare, expensive, unreliable, slow.
But we have lots of machine readable data.

•Want to build systems automatically based on data and a small
amount of prior information (e.g. from experts).

⇒ Sam Roweis ⇒ Geoff Hinton

• In this course, our “systems” will be probabilistic graphical models.

• Assume the prior information we have specifies type & structure of
the GM, as well as the mathematical form of the parent-conditional
distributions or clique potentials.

• In this case learning ≡ setting parameters.
(“Structure learning” is also possible but we won’t consider it now.)



Multiple Observations, Complete IID Data 4

• A single observation of the data X is rarely useful on its own.

• Generally we have data including many observations, which creates
a set of random variables: D = {x1,x2, . . . ,xM}

•We will assume two things:

1. Observations are independently and identically distributed
according to joint distribution of graphical model: IID samples.

2. We observe all random variables in the domain on each
observation: complete data.

•We shade the nodes in a graphical model to indicate they are
observed. (Later you will see unshaded nodes corresponding to
missing data or latent variables.)

1X 2X 3X NX

Likelihood Function 5

• So far we have focused on the (log) probability function p(x|θ)
which assigns a probability (density) to any joint configuration of
variables x given fixed parameters θ.

• But in learning we turn this on its head: we have some fixed data
and we want to find parameters.

• Think of p(x|θ) as a function of θ for fixed x:

L(θ;x) = p(x|θ)

ℓ(θ;x) = log p(x|θ)

This function is called the (log) “likelihood”.

• Chose θ to maximize some cost function c(θ) which includes ℓ(θ):

c(θ) = ℓ(θ;D) maximum likelihood (ML)

c(θ) = ℓ(θ;D) + r(θ) maximum a posteriori (MAP)/penalizedML

(also cross-validation, Bayesian estimators, BIC, AIC, ...)

Maximum Likelihood 6

• For IID data, the log likelihood is a sum of identical functions:

p(D|θ) =
∏

m

p(xm|θ)

ℓ(θ;D) =
∑

m

log p(xm|θ)

• Idea of maximum likelihod estimation (MLE): pick the setting of
parameters most likely to have generated the data we saw:

θ∗ML = argmaxθ ℓ(θ;D)

• Very commonly used in statistics.
Often leads to “intuitive”, “appealing”, or “natural” estimators.

• For a start, the IID assumption makes the log likelihood into a sum,
so its derivative can be easily taken term by term.

Sufficient Statistics 7

• A statistic is a (possibly vector valued) function of a (set of)
random variable(s).

• T (X) is a “sufficient statistic” for X if

T (x1) = T (x2) ⇒ L(θ;x1) = L(θ;x2) ∀θ

• Equivalently (by the Neyman factorization theorem) we can write:

p(x|θ) = h (x, T (x)) g (T (x), θ)

• Example: exponential family models:

p(x|θ) = h(x) exp{η⊤T (x) − A(η)}

X θT(X)



Example: Bernoulli Trials 8

•We observe M iid coin flips: D=H,H,T,H,. . .

•Model: p(H) = θ p(T ) = (1 − θ)

• Likelihood:

ℓ(θ;D) = log p(D|θ)

= log
∏

m

θxm
(1 − θ)1−xm

= log θ
∑

m

xm + log(1 − θ)
∑

m

(1 − xm)

= log θNH + log(1 − θ)NT

• Take derivatives and set to zero:
∂ℓ

∂θ
=

NH

θ
−

NT

1 − θ

⇒ θ∗ML =
NH

NH + NT

Example: Multinomial 9

•We observe M iid die rolls (K-sided): D=3,1,K,2,. . .

•Model: p(k) = θk
∑

k θk = 1

• Likelihood (for binary indicators [xm = k]):

ℓ(θ;D) = log p(D|θ)

= log
∏

m

θxm = log
∏

m

θ
[xm=1]
1 . . . θ

[xm=k]
k

=
∑

k

log θk

∑

m

[xm = k] =
∑

k

Nk log θk

• Take derivatives and set to zero (enforcing
∑

k θk = 1):

∂ℓ

∂θk
=

Nk

θk
− M

⇒ θ∗k =
Nk

M

Example: Univariate Normal 10

•We observe M iid real samples: D=1.18,-.25,.78,. . .

•Model: p(x) = (2πσ2)−1/2 exp{−(x − µ)2/2σ2}

• Likelihood (using probability density):

ℓ(θ;D) = log p(D|θ)

= −
M

2
log(2πσ2) −

1

2

∑

m

(xm − µ)2

σ2

• Take derivatives and set to zero:
∂ℓ
∂µ = (1/σ2)

∑

m(xm − µ)

∂ℓ
∂σ2 = − M

2σ2 + 1
2σ4

∑

m(xm − µ)2

⇒ µML = (1/M )
∑

m xm

σ2
ML = (1/M )

∑

m x2
m − µ2

ML

Example: Univariate Normal 11
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Example: Linear Regression 12

• At a linear regression node, some parents (covariates/inputs) and
all children (responses/outputs) are continuous valued variables.

• For each child and setting of discrete parents we use the model:

p(y|x, θ) = gauss(y|θ⊤x, σ2)

• The likelihood is the familiar “squared error” cost:

ℓ(θ;D) = −
1

2σ2

∑

m

(ym − θ⊤xm)2

• The ML parameters can be solved for using linear least-squares:

∂ℓ

∂θ
= −

∑

m

(ym − θ⊤xm)xm

⇒ θ∗ML = (X⊤X)−1X⊤Y

• Sufficient statistics are input correlation matrix and input-output
cross-correlation vector.

Example: Linear Regression 13
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Sufficient Statistics are Sums 14

• In the examples above, the
sufficient statistics were merely
sums (counts) of the data:
Bernoulli: # of heads, tails
Multinomial: # of each type
Gaussian: mean, mean-square
Regression: correlations

• As we will see, this is true for all
exponential family models:
sufficient statistics are the
average natural parameters.

•Only∗ exponential family models
have simple sufficient statistics.
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MLE for Directed GMs 15

• For a directed GM, the likelihood function has a nice form:

log p(D|θ) = log
∏

m

∏

i

p(xm
i |xπi, θi) =

∑

m

∑

i

log p(xm
i |xπi, θi)

• The parameters decouple; so we can
maximize likelihood independently for
each node’s function by setting θi.

•Only need the values of xi and its
parents in order to estimate θi.

• Furthermore, if xi,xπi have sufficient
statistics only need those.

• In general, for fully observed data if we
know how to estimate params at a single
node we can do it for the whole network.
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Example: A Directed Model 16

• Consider the distribution defined by the DAGM:

p(x|θ) = p(x1|θ1)p(x2|x1, θ2)p(x3|x1, θ3)p(x4|x2,x3, θ4)

• This is exactly like learning four separate small DAGMs, each of
which consists of a node and its parents (not its Markov blanket).

1X

2X 3X

X 4

1X

2X

1X

3X

1X

X 4

2X 3X

(a) (b)

MLE for Multinomial Networks 17

• Assume our DAGM contains only discrete nodes, and we use the
(general) multinomial form for the conditional probabilities.

• Sufficient statistics involve counts of joint settings of xi,xπi

summing over all other variables in the table.

• Likelihood for these special “fully observed multinomial networks”:

ℓ(θ;D) = log
∏

m,i

p(xm
i |xπi

m, θi)

= log
∏

i,xi,xπi

p(xi|xπi, θi)
N(xi,xπi) = log

∏

i,xi,xπi

θ
N(xi,xπi)

xi|xπi

=
∑

i

∑

xi,xπi

N (xi,xπi) log θxi|xπi

⇒ θ∗
xi|xπi

=
N (xi,xπi)

N (xπi)

MLE for General Exponential Family Models 18

• Recall the probability function for models in the exponential family:

p(x|θ) = h(x) exp{η⊤T (x) − A(η)}

• For iid data, the sufficient statistic vector is
∑

m T (xm):

ℓ(η;D) = log p(D|η) =

(

∑

m

log h(xm)

)

−MA(η)+

(

η⊤
∑

m

T (xm)

)

• Take derivatives and set to zero:
∂ℓ
∂η =

∑

m T (xm) − M
∂A(η)

∂η

⇒
∂A(η)

∂η = 1
M

∑

m T (xm)

ηML = 1
M

∑

m T (xm)

recalling that the natural moments of an exponential distribution
are the derivatives of the log normalizer.


