

Bernoulli Distribution \mathbb{N} 4

 \bullet For a binary random variable $x=\{0,1\}$ with $p(x=1)=\pi$:

$$
p(x|\pi) = \pi^x (1-\pi)^{1-x}
$$

$$
= \exp\left\{\log\left(\frac{\pi}{1-\pi}\right)x + \log(1-\pi)\right\}
$$

• Exponential family with:

$$
\eta = \log \frac{\pi}{1 - \pi}
$$

\n
$$
T(x) = x
$$

\n
$$
A(\eta) = -\log(1 - \pi) = \log(1 + e^{\eta})
$$

\n
$$
h(x) = 1
$$

 \bullet The *logistic* function links natural parameter and chance of heads

$$
\pi = \frac{1}{1 + e^{-\eta}} = \text{logistic}(\eta)
$$

Poisson

N 5

 \bullet For an integer count variable with *rate* λ :

$$
p(x|\lambda) = \frac{\lambda^x e^{-\lambda}}{x!}
$$

=
$$
\frac{1}{x!} \exp\{x \log \lambda - \lambda\}
$$

• Exponential family with:

$$
\eta = \log \lambda
$$

\n
$$
T(x) = x
$$

\n
$$
A(\eta) = \lambda = e^{\eta}
$$

\n
$$
h(x) = \frac{1}{x!}
$$

- \bullet e.g. number of photons ${\bf x}$ that arrive at a pixel during a fixed interval given mean intensity λ
- Other count densities: (neg)binomial, geometric.
- Multinomial
- \bullet For a categorical (discrete), random variable taking on K possible values, let π_k be the probability of the k^{th} value. We can use a binary vector $\mathbf{x} = (x_1, x_2, \ldots, x_k, \ldots, x_K)$ in which $x_k \!=\! 1$ if and only if the variable takes on its k^{th} value. Now we can write,

$$
p(\mathbf{x}|\pi) = \pi_1^{x_1} \pi_2^{x_2} \cdots \pi_K^{x_K} = \exp\left\{\sum_i x_i \log \pi_i\right\}
$$

Exactly like ^a probability table, but written using binary vectors.

 \bullet If we observe this variable several times $\mathbf{X} = \{\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^N\}$, the (iid) probability depends on the *total observed counts* of each value:

$$
p(\mathbf{X}|\pi) = \prod_{n} p(\mathbf{x}^n|\pi) = \exp\left\{\sum_{i} \left(\sum_{n} x_i^n\right) \log \pi_i\right\} = \exp\left\{\sum_{i} c_i \log \pi_i\right\}
$$

Multinomial as Exponential Family 7

-
- \bullet The multinomial parameters are constrained: $\sum_i \pi_i = 1.$ Define (the last) one in terms of the rest: $\pi_K = 1 - \sum_{i=1}^{K-1} \pi_i$ $p(\mathbf{x}|\pi) = \exp\left\{\sum_{i=1}^{K-1} \log\left(\frac{\pi_i}{\pi_K}\right) x_i + k \log \pi_K\right\}$
- Exponential family with:

$$
\eta_i = \log \pi_i - \log \pi_K
$$

\n
$$
T(x_i) = x_i
$$

\n
$$
A(\eta) = -k \log \pi_K = k \log \sum_i e^{\eta_i}
$$

\n
$$
h(\mathbf{x}) = 1
$$

• The softmax function relates direct and natural parameters:

$$
\pi_i = \frac{e^{\eta_i}}{\sum_j e^{\eta_j}}
$$

 \mathbf{L} 6

Nodes with Parents 12

- When the parent is discrete, we just have one probability model for each setting of the parent. Examples:
	- table of natural parameters (exponential model for cts. child)
	- table of tables (CPT model for discrete child)
- When the parent is numeric, some or all of the parameters for the child node become *functions* of the parent's value.
- A very common instance of this for regression is the "linear-Gaussian" $\colon p(\mathbf{y}|\mathbf{x}) = \text{gauss}(\theta^\top \mathbf{x}; \Sigma).$
- \bullet For classification, often use Bernoulli/Multinomial densities whose parameters π are some function of the parent: $\pi_j = f_j(\mathbf{x})$.

GLMs and Canonical Links 13

-
- \bullet Generalized Linear Models: $p(\mathbf{y}|\mathbf{x})$ is exponential family with conditional mean $\mu_i = f_i(\theta^\top \mathbf{x}).$
- \bullet The function f is called the *response function*.
- \bullet If we chose f to be the inverse of the mapping b/w conditional mean and natural parameters then it is called the *canonical* response function or canonical link:

$$
\eta = \psi(\mu)
$$

$$
f(\cdot) = \psi^{-1}(\cdot)
$$

• Example: logistic function is canonical link for Bernoulli variables; softmax function is canonical link for multinomials

POTENTIAL FUNCTIONS 14

- We are much less constrained with potential functions, since they can be any positive function of the values of the clique nodes.
- \bullet Recall $\psi_C(\mathbf{x}_C) = \exp\{-H_C(\mathbf{x}_C)\}$
- A common (redundant) choice for cliques which are pairs is:

Basic Statistical Problems 15

-
- Let's remind ourselves of the basic problems we discussed on the first day: density estimation, clustering classification and regression.
- Can always do joint density estimation and then condition:

Regression: $p(\mathbf{y}|\mathbf{x}) = p(\mathbf{y}, \mathbf{x})/p(\mathbf{x}) = p(\mathbf{y}, \mathbf{x})/ \int p(\mathbf{y}, \mathbf{x}) d\mathbf{y}$ Classification: $p(c|\mathbf{x}) = p(c,\mathbf{x})/p(\mathbf{x}) = p(c,\mathbf{x})/\sum_c p(c,\mathbf{x})$

Clustering: $p(c|\mathbf{x}) = p(c, \mathbf{x})/p(\mathbf{x})$ c unobserved

Density Estimation: $p(\mathbf{y}|\mathbf{x}) = p(\mathbf{y}, \mathbf{x})/p(\mathbf{x})$ x unobserved In general, if certain nodes are always observed we may not If certain nodes are *always* unob-

want to model their density: *X*

Y

Regression/Classification

