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LECTURE 4:

PROBABILITY MODELS

January 18, 2006

e For discrete (categorical) variables, the most basic parametrization
is the probability table which lists p(z = k" value).

e Since PTs must be nonnegative and sum to 1, for k-ary nodes
there are k — 1 free parameters.

e If a discrete node has discrete parent(s) we make one table for each
setting of the parents: this is a conditional probability table or CPT.
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WHAT’S INSIDE THE NODES/CLIQUES? 1

EXPONENTIAL FAMILY 3

e We've focused a lot on the structure of the graphs in directed and
undirected models. Today we'll look at specific functions that can
live inside the nodes (directed) or on the cliques (undirected).

e For directed models we need prior functions p(x;) for root nodes
and parent-conditionals p(x;|xr,) for interior nodes.

e For undirected models we need clique potentials 1) (x(x) on the
maximal cliques (or log potentials/energies Hq(x¢)).

o We'll consider various types of nodes: binary/discrete (categorical),
continuous, interval, and integer counts.

e We'll see some basic probability models (parametrized families of
distributions); these models live inside nodes of directed models.

e We'll also see a variety of potential /energy functions which take
multiple node values as arguments and return a scalar
compatibility; these live on the cliques of undirected models.

e For a numeric random variable x
p(x|n) = h(x)exp{n ' T(x) — A(n)}

1 T
- %h(x) exp{n T'(x)}

is an exponential family distribution with
natural parameter 7).

e Function T'(x) is a sufficient statistic.
e Function A(n) = log Z(n) is the log normalizer.

e Key idea: all you need to know about the data in order to estimate
parameters is captured in the summarizing function 7'(x).

e Examples: Bernoulli, binomial /geometric/negative-binomial,
Poisson, gamma, multinomial, Gaussian, ...




BERNOULLI DISTRIBUTION

e For a binary random variable =z = {0, 1} with p(x = 1) = 7:
p(zlr) = 7(1 —m)' =7

= exp {log <1 T ) 2+ log(1 — w)}

e Exponential family with:

MULTINOMIAL 6

e For a categorical (discrete), random variable taking on K possible
values, let ;. be the probability of the k' value. We can use a
binary vector x = (21, x9,..., 2L, ..., Tf) in which ;=1 if and
only if the variable takes on its k! value. Now we can write,

Ty, T2

p(x|m) = mtmy? - Wf(K = exp le log 7;

n = log i
1 —
T(z) =z Exactly like a probability table, but written using binary vectors.
A(n) = —log(1 — 7) = log(1 + 677) o |f we observe this variable several times X = {xl, XQ, . ,XN}, the
h(z) =1 (iid) probability depends on the total observed counts of each value:
e The logistic function links natural parameter and chance of heads p(X|m) = HP x"|m) = exp {Z ( n; ) log Wz} =exp {D_; ¢;logm;}
1
= = 1 1 t.
=i, ogistic(n)
PoissoN MULTINOMIAL AS EXPONENTIAL FAMILY 7

e For an integer count variable with rate A:

p(ald) = —

1
== exp{zlog A — \}
!

)\.’Ee—)\

e Exponential family with:

n =log A
T(z)=uz
Aln) ==l
hz) = =

e e.g. number of photons x that arrive at a pixel during a fixed
interval given mean intensity A

e Other count densities: (neg)binomial, geometric.

e The multinomial parameters are constrained: >, m; = 1.

Define (the last) one in terms of the rest: 7 =1 — Zfi{l i

p(x|m) = exp {ZK og ( K) x; + klogﬂK}

e Exponential family with:

n; = logm; —logmg
( z)_xz

An) = —klong—klogE el
h(x) =

e The softmax function relates direct and natural parameters:
i
e




(GAUSSIAN (NORMAL)

(GAUSSIANS 10

e For a continuous univariate random variable:
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e Exponential family with:

n=lu/o*; —1/207)
T(2) = [v; 27
A(n) =logo + p?/20°
h(z) = 1/V2x
e Note: a univariate Gaussian is a two-parameter distribution with a
two-component vector of sufficient statistics. (also maxent)

e The Gaussian is the most important continuous distribution.

B

e You should know how to manipulate these, and condition on
subsets of variables given others. Mostly linear algebra.

e Other continuous densities: Student-t, Laplacian.

e Nonnegative densities: exponential, Gamma, log-normal.

MULTIVARIATE GAUSSIAN DISTRIBUTION

MOMENTS 11

e For a continuous vector random variable:
1
ploli ) = forsl~Zexp { o s x|

e Exponential family with:
=2 —1/257]
(:c) [ xx]
Aln) =log|S/2+ 'S /2
h(z) = (2m) "/
e Note: a d-dimensional Gaussian is a d+d*parameter distribution
with a d+d?-component vector of sufficient statistics

(but because of symmetry and positivity, parameters are
constrained)

e For numeric nodes, moment calculations are important.

o We can easily compute moments of any exponential family
distribution by taking the derivatives of the log normalizer A(7).

e The ¢!" derivative gives the ¢'" centred moment.

A
d—(n) = mean
dn
2A
d (77) = variance

an

e When the sufficient statistic is a vector, partial derivatives need to
be considered.




NODES WITH PARENTS 12

e When the parent is discrete, we just have one probability model for
each setting of the parent. Examples:
— table of natural parameters (exponential model for cts. child)
— table of tables (CPT model for discrete child)

e When the parent is numeric, some or all of the parameters for the
child node become functions of the parent's value.

e A very common instance of this for regression is the
“linear-Gaussian”: p(y|x) = gauss(6'x; ).

e For classification, often use Bernoulli/Multinomial densities whose
parameters 7 are some function of the parent: 7; = f;(x).

POTENTIAL FUNCTIONS 14

e We are much less constrained with potential functions, since they
can be any positive function of the values of the clique nodes.

e Recall Yo (xc) = exp{—Ho(x¢c)}
e A common (redundant) choice for cliques which are pairs is:

H(x) =) axi+ Y wijXx,

1 pairs ¢j

OnOnOntn®

GLMs AND CANONICAL LINKS 13

BAsIC STATISTICAL PROBLEMS 15

e Generalized Linear Models: p(y|x) is exponential family with
conditional mean y; = f;(0'x).
o The function f is called the response function.

e If we chose f to be the inverse of the mapping b/w conditional
mean and natural parameters then it is called the canonical
response function or canonical link:

n=(p)
—1
fG)=v"()
e Example: logistic function is canonical link for Bernoulli variables;
softmax function is canonical link for multinomials

e Let's remind ourselves of the basic problems we discussed on the
first day: density estimation, clustering classification and regression.

e Can always do joint density estimation and then condition:
Regression: p(y|x) = p(y,x)/p(x) = p(y,x)/ [ p(y,x)dy
Classification: p(c|x) = p(c,x)/p(x) = p(e,x)/ > ple, x)
Clustering: p(c|x) = p(c,x)/p(x) ¢ unobserved
Density Estimation: p(y|x) = p(y,x)/p(x) x unobserved

In general, if certain nodes are If certain nodes are always unob-

always observed we may not served they are called hidden or

want to model their density: latent variables (more later):
X z

T

Y X

Regression /Classification Clustering/Density Est.




FUNDAMENTAL OPERATIONS 16

e What can we do with a probabilistic graphical model?

e Generate data.
For this you need to know how to sample from local models
(directed) or how to do Gibbs or other sampling (undirected).

e Compute log probabilities.
When all nodes are either observed or marginalized the result is a
single number which is the log prob of the configuration.

e Inference.
Compute expectations of some nodes given others which are
observed or marginalized.

e Learning.
Set the parameters of the local functions given some (partially)
observed data to maximize the probability of seeing that data.




