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Lecture 4:

Probability Models

January 18, 2006

What’s Inside the Nodes/Cliques? 1

• We’ve focused a lot on the structure of the graphs in directed and
undirected models. Today we’ll look at specific functions that can
live inside the nodes (directed) or on the cliques (undirected).

• For directed models we need prior functions p(xi) for root nodes
and parent-conditionals p(xi|xπi) for interior nodes.

• For undirected models we need clique potentials ψC(xC) on the
maximal cliques (or log potentials/energies HC(xC)).

• We’ll consider various types of nodes: binary/discrete (categorical),
continuous, interval, and integer counts.

• We’ll see some basic probability models (parametrized families of
distributions); these models live inside nodes of directed models.

• We’ll also see a variety of potential/energy functions which take
multiple node values as arguments and return a scalar
compatibility; these live on the cliques of undirected models.

Probability Tables & CPTs 2

• For discrete (categorical) variables, the most basic parametrization
is the probability table which lists p(x = kth value).

• Since PTs must be nonnegative and sum to 1, for k-ary nodes
there are k − 1 free parameters.

• If a discrete node has discrete parent(s) we make one table for each
setting of the parents: this is a conditional probability table or CPT.
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Exponential Family 3

• For a numeric random variable x

p(x|η) = h(x) exp{η>T (x) − A(η)}
=

1

Z(η)
h(x) exp{η>T (x)}

is an exponential family distribution with
natural parameter η.

• Function T (x) is a sufficient statistic.

• Function A(η) = logZ(η) is the log normalizer.

• Key idea: all you need to know about the data in order to estimate
parameters is captured in the summarizing function T (x).

• Examples: Bernoulli, binomial/geometric/negative-binomial,
Poisson, gamma, multinomial, Gaussian, ...



Bernoulli Distribution 4

• For a binary random variable x = {0, 1} with p(x = 1) = π:

p(x|π) = πx(1 − π)1−x

= exp

{

log

(

π

1 − π

)

x + log(1 − π)

}

• Exponential family with:

η = log
π

1 − π
T (x) = x

A(η) = − log(1 − π) = log(1 + eη)

h(x) = 1

• The logistic function links natural parameter and chance of heads

π =
1

1 + e−η
= logistic(η)

Poisson 5

• For an integer count variable with rate λ:

p(x|λ) =
λxe−λ

x!

=
1

x!
exp{x log λ− λ}

• Exponential family with:

η = log λ

T (x) = x

A(η) = λ = eη

h(x) =
1

x!

• e.g. number of photons x that arrive at a pixel during a fixed
interval given mean intensity λ

• Other count densities: (neg)binomial, geometric.

Multinomial 6

• For a categorical (discrete), random variable taking on K possible
values, let πk be the probability of the kth value. We can use a
binary vector x = (x1, x2, . . . , xk, . . . , xK) in which xk=1 if and
only if the variable takes on its kth value. Now we can write,

p(x|π) = π
x1
1 π

x2
2 · · · πxKK = exp







∑

i

xi log πi







Exactly like a probability table, but written using binary vectors.

• If we observe this variable several times X = {x1,x2, . . . ,xN}, the
(iid) probability depends on the total observed counts of each value:

p(X|π) =
∏

n

p(xn|π) = exp
{
∑

i

(
∑

n x
n
i

)

log πi
}

= exp {∑i ci log πi}

Multinomial as Exponential Family 7

• The multinomial parameters are constrained:
∑

i πi = 1.

Define (the last) one in terms of the rest: πK = 1 −
∑K−1
i=1 πi

p(x|π) = exp
{

∑K−1
i=1 log

(

πi
πK

)

xi + k log πK

}

• Exponential family with:

ηi = log πi − log πK
T (xi) = xi
A(η) = −k log πK = k log

∑

i e
ηi

h(x) = 1

• The softmax function relates direct and natural parameters:

πi =
eηi

∑

j e
ηj



Gaussian (normal) 8

• For a continuous univariate random variable:

p(x|µ, σ2) =
1√
2πσ

exp

{

− 1

2σ2
(x− µ)2

}

=
1√
2π

exp

{

µx

σ2
− x2

2σ2
− µ2

2σ2
− log σ

}

• Exponential family with:

η = [µ/σ2 ; −1/2σ2]

T (x) = [x ; x2]

A(η) = log σ + µ2/2σ2

h(x) = 1/
√

2π

• Note: a univariate Gaussian is a two-parameter distribution with a
two-component vector of sufficient statistics. (also maxent)

Multivariate Gaussian Distribution 9

• For a continuous vector random variable:

p(x|µ,Σ) = |2πΣ|−1/2 exp

{

−1

2
(x − µ)>Σ−1(x− µ)

}

• Exponential family with:

η = [Σ−1µ ; −1/2Σ−1]

T (x) = [x ; xx>]

A(η) = log |Σ|/2 + µ>Σ−1µ/2

h(x) = (2π)−n/2

• Note: a d-dimensional Gaussian is a d+d2-parameter distribution
with a d+d2-component vector of sufficient statistics
(but because of symmetry and positivity, parameters are
constrained)

Gaussians 10

• The Gaussian is the most important continuous distribution.

A

B

x

• You should know how to manipulate these, and condition on
subsets of variables given others. Mostly linear algebra.

• Other continuous densities: Student-t, Laplacian.

• Nonnegative densities: exponential, Gamma, log-normal.

Moments 11

• For numeric nodes, moment calculations are important.

• We can easily compute moments of any exponential family
distribution by taking the derivatives of the log normalizer A(η).

• The qth derivative gives the qth centred moment.

dA(η)

dη
= mean

d2A(η)

dη2
= variance

· · ·
• When the sufficient statistic is a vector, partial derivatives need to

be considered.



Nodes with Parents 12

• When the parent is discrete, we just have one probability model for
each setting of the parent. Examples:
– table of natural parameters (exponential model for cts. child)
– table of tables (CPT model for discrete child)

• When the parent is numeric, some or all of the parameters for the
child node become functions of the parent’s value.

• A very common instance of this for regression is the
“linear-Gaussian”: p(y|x) = gauss(θ>x; Σ).

• For classification, often use Bernoulli/Multinomial densities whose
parameters π are some function of the parent: πj = fj(x).

GLMs and Canonical Links 13

• Generalized Linear Models: p(y|x) is exponential family with
conditional mean µi = fi(θ

>x).

• The function f is called the response function.

• If we chose f to be the inverse of the mapping b/w conditional
mean and natural parameters then it is called the canonical

response function or canonical link:

η = ψ(µ)

f (·) = ψ−1(·)
• Example: logistic function is canonical link for Bernoulli variables;

softmax function is canonical link for multinomials

Potential Functions 14

• We are much less constrained with potential functions, since they
can be any positive function of the values of the clique nodes.

• Recall ψC(xC) = exp{−HC(xC)}
• A common (redundant) choice for cliques which are pairs is:

H(x) =
∑

i

aixi +
∑

pairs ij

wijxixj

Basic Statistical Problems 15

• Let’s remind ourselves of the basic problems we discussed on the
first day: density estimation, clustering classification and regression.

• Can always do joint density estimation and then condition:
Regression: p(y|x) = p(y,x)/p(x) = p(y,x)/

∫

p(y,x)dy
Classification: p(c|x) = p(c,x)/p(x) = p(c,x)/

∑

c p(c,x)
Clustering: p(c|x) = p(c,x)/p(x) c unobserved
Density Estimation: p(y|x) = p(y,x)/p(x) x unobserved

In general, if certain nodes are
always observed we may not
want to model their density:

Y

X

Regression/Classification

If certain nodes are always unob-
served they are called hidden or
latent variables (more later):

X

Z

Clustering/Density Est.



Fundamental Operations 16

• What can we do with a probabilistic graphical model?

• Generate data.
For this you need to know how to sample from local models
(directed) or how to do Gibbs or other sampling (undirected).

• Compute log probabilities.

When all nodes are either observed or marginalized the result is a
single number which is the log prob of the configuration.

• Inference.

Compute expectations of some nodes given others which are
observed or marginalized.

• Learning.

Set the parameters of the local functions given some (partially)
observed data to maximize the probability of seeing that data.


