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Lecture 3:

Undirected Graphical Models

January 16, 2006

Review: Goal of Graphical Models 1

• Graphical models aim to provide compact factorizations of large
joint probability distributions.

• These factorizations are achieved using local functions which
exploit conditional independencies in the models.

• The graph tells us a basic set of conditional independencies that
must be true. From these we can derive more that also must be
true. These independencies are crucial to developing efficient
algorithms valid for all numerical settings of the local functions.

• Local functions tell us the quantitative details of the distribution.

• Certain numerical settings of the distribution may have more
independencies present, but these do not come from the graph.
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Review: Directed Models (Bayes Nets) 2

• Semantics: x ⊥ y|z if z d-separates x and y

• d-separation: z d-separates x from y if along every undirected path
between x and y there is a node w such that either:

1. w has converging arrows along the path (→ w←) and neither
w nor its descendents are in z or

2. w does not have converging arrows along the path and w ∈ z.

• The “Bayes-Ball” algorithm can be used to check d-separation.

• It is always possible to find a distibution consistent with the graph.
Most general such distribution is a product of parent-conditionals:

P(x1,x2, . . . ,xn) =
∏

i

P(xi|xπi)
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Undirected Models 3

• Also graphs with one node per random variable and edges that
connect pairs of nodes, but now the edges are undirected.

• Semantics: every node is conditionally independent from its
non-neighbours given its neighbours, i.e.
xA ⊥ xC | xB if every path b/w xA and xC goes through xB
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• Can model symmetric interactions that directed models cannot.

• aka Markov Random Fields, Markov Networks, Boltzmann
Machines, Spin Glasses, Ising Models



Simple Graph Separation 4

• In undirected models, simple graph separation (as opposed to
d-separation) tells us about conditional independencies.

• xA ⊥ xC|xB if every path between xA and xC is blocked
by some node in xB.
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• “Markov Ball” algorithm:
remove xB and see if there is any path from xA to xC.

Markov Blanket 5

• b is a “Markov blanket” for x iff

x ⊥ y | b ∀ y /∈ b

• “Markov boundary”: minimal Markov blanket

• For undirected models, this is set of neighbours.

•Q: What is the Markov blanket (boundary) in a directed model?
A: {parents+children+parents-of-children}

Conditional Parameterization? 6

• In directed models, we started with p(x) =
∏
i p(xi|xπi) and we

derived the d-separation semantics from that.

• Undirected models: have the semantics, need parametrization.

•What about this “conditional parameterization”?

p(x) =
∏

i

p(xi|xneighbours(i))

• Good: product of local functions.
Good: each one has a simple conditional interpretation.
Bad: local functions cannot be arbitrary, but must agree properly in
order to define a valid distribution.

Marginal Parameterization? 7

•OK, what about this “marginal parameterization”?

p(x) =
∏

i

p(xi,xneighbours(i))

• Good: product of local functions.
Good: each one has a simple marginal interpretation.
Bad: only very few pathalogical marginals on overalpping nodes can
be multiplied to give a valid joint.



Clique Potentials 8

•Whatever factorization we pick, we know that only connected
nodes can be arguments of a single local function.

• A clique xc is a fully connected subset of nodes.

• Thus, consider using a product of positive clique potentials:

P(x) =
1

Z

∏

cliques c

ψc(xc) Z =
∑

x

∏

cliques c

ψc(xc)

• The product of functions that don’t need to agree with each other.

• Still factors in the way that the graph semantics demand.

•Without loss of generality
we can restrict ourselves to
maximal cliques. (Why?)
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Examples of Clique Potentials 9
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p(x) = ψA(x1, x2)ψB(x1, x3)
ψC(x2, x4)ψD(x3, x5)
ψE(x2, x5, x6)

p(x) =
∏
iψ(xi, xi + 1)

Boltzmann Distributions 10

•We often represent the clique potentials using their logs:

ψC(xC) = exp{−HC(xC)}

for arbitrary real valued “energy” functions HC(xC).
The negative sign is a standard convention.

• This gives the joint a nice additive structure:

P(x) =
1

Z
exp{−

∑

cliques C

HC(xc)} =
1

Z
exp{−H(x)}

where the sum in the exponent is called the “free energy”:

H(x) =
∑

C

HC(xc)

• This way of defining a probability distribution based on energies is
the “Boltzmann distribution”from statistical physics.

Partition Function 11

• Normalizer Z(x) above is called the “partition function”.

• Computing the normalizer and its derivatives can often be the
hardest part of inferene and learning in undirected models.

•Often the factored structure of the distribution makes it possible to
efficiently do the sums/integrals required to compute Z.

• Don’t always have to compute Z, e.g. for conditional probabilities.



Interpretation of Clique Potentials 12

X Y Z

• The model implies x ⊥ z | y

p(x,y, z) = p(y)p(x|y)p(z|y)

•We can write this as:

p(x,y, z) = p(x,y)p(z|y) = ψxy(x,y)ψyz(y, z)

p(x,y, z) = p(x|y)p(z,y) = ψxy(x,y)ψyz(y, z)

cannot have all potentials be marginals
cannot have all potentials be conditionals

• The positive clique potentials can only be thought of as general
“compatibility”, “goodness” or “happiness” functions over their
variables, but not as probability distributions.

Hammersley-Clifford Theorem (1971) 13

• H-C theorem tells us that the family of distributions defined by the
conditional independence semantics on the graph and the family
defined by products of potential functions∗ on maximal cliques are
the same. (* arbitrary real valued, but strictly positive)

• For directed models, there is a version of this theorem which tells
us that the family of distributions defined by the conditional
independencies semantics of the directed graph and the family
defined by products of parent-conditionals are the same.

• Notice the crucial difference between graphs, which tells us
independencies that are true no matter what local functions we
choose, and numerical functions which could introduce some extra
independencies, once we know them.

Expressive Power 14

• Can we always convert directed ↔ undirected?

• No.
W

X Y

Z

X Y

Z

(a) (b)

No directed model
can represent these
and only these
independencies.
x ⊥ y | {w, z}
w ⊥ z | {x,y}

No undirected model
can represent these
and only these
independencies.
x ⊥ y

Example: Ising Models 15

• Common model for binary nodes: spin-glass/ Ising lattice.

• Nodes are arranged in a regular topology (often a regular packing
grid) and connected only to their geometric neighbours.

• For example, if we think of each node as a pixel, we might want to
encourage nearby pixels to have similar intensities.

• Energy is of the form:

H(x) =
∑

ij

βijxixj +
∑

i

αixi



Example: Gaussian Distribution 16

• The most common and important undirected graphical model on a
set of continuous valued nodes is the Gaussian (normal).

• It uses pairwise potentials between every pair of nodes to define an
energy identical to the Ising model, but for continuous values:

H(x) =
∑

ij

(xi − µi)Vij(xj − µj)

where µ is the mean and V is the inverse covariace matrix.

• Like a “fully connected” lattice.
Also, the Gaussian is the maximum entropy distribution consistent
with the mean and covariance defined by µ and V.

Example: Boltzmann Machines 17

• Fully observed Boltzmann machines are the binary equivalent of a
Gaussian distribution: fully connected Ising models on a set of
binary random variables. (Also maxent.)

•

Energy is the same:
H(x) =

∑
ij βijxixj +

∑
iαixi

• Boltzmann machines also add the possibility of having some units
(random variables) which are never observed. These are called
“hidden units” or “latent variables” and we will see much more
about them later.

• For continuous variables, the equivalent of a Boltzmann machine
with hidden units is called a “factor analysis” model.


