Sam Roweis

1

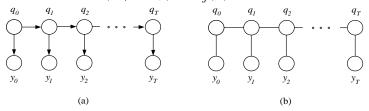
LECTURE 21:

JUNCTION TREE DERIVATION OF HMM INFERENCE

March 29, 2006

HMM GRAPHICAL MODEL

- ullet Hidden states q_t , observations \mathbf{y}_t .
- Transition parameters: $p(q_{t+1} = j | q_t = i) = S_{ij}$
- ullet Output parameters: $p(\mathbf{y}_t|q_t=j)=A_j(\mathbf{y})$

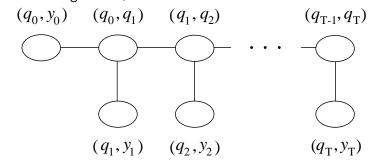


- Moralization easy: each node has a single parent.
- Triangulation easy: moralized graph has no cycles.

HMM JUNCTION TREE

• Cliques of moralized-triangulated: (q_t, q_{t+1}) and (q_t, \mathbf{y}_t) .

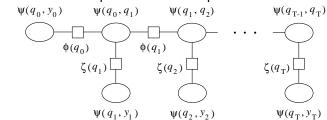
• Many maximal spanning trees, so many junction trees. For standard algorithms, select this one:



• Other spanning trees lead to other algorithms.

CLIQUES AND POTENTIALS

• The junction tree with potentials and cliques looks like this:



• Initialization:

$$\psi(q_0, \mathbf{y}_0) = p(q_0)p(\mathbf{y}_0|q_0) = \pi_{q_0}A_{q_0}(\mathbf{y}_0)$$

$$\psi(q_t, q_{t+1}) = p(q_{t+1}||q_t) = S_{q_t, q_{t+1}}$$

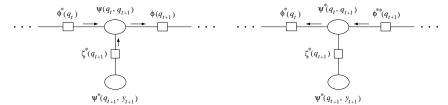
$$\psi(q_t, \mathbf{y}_t) = p(\mathbf{y}_t|q_t) = A_{q_t}(\mathbf{y}_t)$$

$$\phi(\cdot) = 1$$

$$\xi(\cdot) = 1$$

)

- Select (q_{T-1}, q_T) as the root.
- COLLECTEVIDENCE(root) generates: observation messages upwards from (q_t, \mathbf{y}_t) to (q_{t-1}, q_t) ; and backbone messages from (q_{t-1}, q_t) to (q_t, q_{t+1}) .
- DISTRIBUTE EVIDENCE (root) generates: correction messages downwards from (q_{t-1}, q_t) to (q_t, \mathbf{y}_t) ; and backwards from (q_t, q_{t+1}) to (q_{t-1}, q_t) .



- \bullet First set the ψ potentials to introduce evidence: $\psi(q_t, \mathbf{y}_t) = A_{q_t} \delta(\mathbf{y}_t - \bar{\mathbf{y}}_t).$
- Now run COLLECT:
- Now run Collecti.
 Marginalizing gives $\sum_{\mathbf{y}_t} \psi(q_t, \mathbf{y}_t) = A_{q_t}(\bar{\mathbf{y}}_t)$.
 Thus, separator $\xi^*(q_t) = p(\bar{\mathbf{y}}_t|q_t)$ for fixed $\bar{\mathbf{y}}_t$.
- Consider update factors passed to (q_t, q_{t+1}) : $\psi^*(q_t, q_{t+1}) = \psi(q_t, q_{t+1})\phi^*(q_t)\xi^*(q_{t+1}).$ $\psi^*(q_t, q_{t+1}) = S_{q_t, q_{t+1}} \phi^*(q_t) P(\mathbf{y}_{t+1} | q_{t+1}).$
- Initialize with $\phi^*(q_0) = p(\bar{\mathbf{y}}_0|q_0)p(q_0)$.
- Now we can continue along the chain: $\phi^*(q_{t+1}) = \sum_{q_t} \psi^*(q_t, q_{t+1}) = \sum_{q_t} S_{q_t, q_{t+1}} \phi^*(q_t) P(\mathbf{y}_{t+1} | q_{t+1})$
- Notice: $\phi^*(q_t) = \alpha_t = p(\mathbf{y}_0^t, q_t)$ We have recovered the α recursion automatically.
- After collect, how do we comput $L = p(\mathbf{Y})$?

Message Passing (no evidence)

- Upwards messages: $\sum_{\mathbf{y}_t} \psi(q_t, \mathbf{y}_t) = \sum_{\mathbf{y}_t} p(\mathbf{y}_t|q_t) = 1$ so the separator potential $\xi^*(q_t) = 1$ is unchanged by marginalization.
- Upwards messages have no effect when no evidence is observed.
- Backbone messages: $\phi^*(q_0) = \sum_{\mathbf{y}_0} \psi(q_0, \mathbf{y}_0) = P(q_0)$ $\psi^*(q_0, q_1) = \psi(q_0, q_1)\phi^*(q_0) = P(q_0, q_1)$ etc...
- All backbone potentials get converted to marginals in COLLECT phase. Backwards DISTRIBUTE phase has no effect on ϕ .
- DISTRIBUTE converts $\xi(q_t)$ into marginal $P(q_t)$ and $\psi(q_t, \mathbf{y}_t)$ into marginals $P(q_t, \mathbf{y}_t)$. No effect on $\psi(q_t, q_{t+1})$.

Check of ϕ^*

- Check that $\phi^*(q_t) = P(\mathbf{y}_0^t, q_t)$.
- Initially, $\phi^*(q_0) = p(\bar{\mathbf{y}}_0|q_0)p(q_0)$.
- By induction:

$$\phi^*(q_{t+1}) = \sum_{q_t} S_{q_t, q_{t+1}} \phi^*(q_t) P(\mathbf{y}_{t+1} | q_{t+1})$$

$$= \sum_{q_t} P(q_{t+1} | q_t) P(\mathbf{y}_0^t, q_t) P(\mathbf{y}_{t+1} | q_{t+1})$$

$$= \sum_{q_t} P(\mathbf{y}_0^t, \mathbf{y}_{t+1}, q_t, q_{t+1})$$

$$= P(\mathbf{y}_0^{t+1}, q_{t+1})$$

• After collect, $\psi^*(q_{t-1}, q_t) = p(\mathbf{y}_0^t, q_{t-1}, q_t)$.

10

• The DISTRIBUTE call generates backwards updates:

$$\psi^{**}(q_{t}, q_{t+1}) = \psi^{*}(q_{t}, q_{t+1}) \frac{\phi^{**}(q_{t+1})}{\phi^{*}(q_{t+1})} \cdots \frac{\phi^{*}(q_{t}, q_{t+1})}{\phi^{*}(q_{t+1})} \cdots \frac{\phi^{*}(q_{t+1})}{\phi^{*}(q_{t+1})} \cdots \frac{\phi^{*}(q_{t+1})}{\phi^{*}$$

- ullet Now, $\phi^{**}(q_t) = L\gamma_t = p(q_t, \mathbf{y}_0^T)$. No beta!
- After distribute, $\psi^{**}(q_{t-1}, q_t) = p(\mathbf{y}_0^T, q_{t-1}, q_t)$.

- Consider the case when no observations have been made.
- Marginalizing gives $\sum_{\mathbf{y}_t} \psi(q_t, \mathbf{y}_t) = 1$ so separator $\xi^*(q_t)$ does not change. Thus, update factor passed to (q_{t-1}, q_t) is unity and $\psi(q_{t-1}, q_t)$ is also unchanged. Leaf messages do nothing when no evidence.
- ullet Subsequent distribute pass does not change backbone, but will convert $\xi(q_t)$ into marginals $p(q_t)$ and potentials $\psi(q_t,\mathbf{y}_t)$ into marginals $p(q_t,\mathbf{y}_t)$.
- Why would you ever want to do this?
- tells you about generative behaviour
- can help numerical scaling of algorithms

RECURSIONS

g

- The basic COLLECT-DISTRIBUTE messages allow us to generate a variety of recursions.
- We chose $\phi^*(q_t)$ and $\phi^{**}(q_t)$ which gave the alpha-gamma recursions for HMM inference.
- Using root (q_0, q_1) gives beta recursions instead of alpha.
- ullet A recursion on the update factors $\phi^{**}(q_t)/\phi^*(q_t)$ gives the alpha-beta algorithm.
- Recursions on $\psi^*(q_{t-1}, q_t)$ and $\psi^{**}(q_{t-1}, q_t)$ directly gives a new algorithm known as rho-xi.