CSC412 — Probabilistic Learning & Reasoning Sam Roweis

LECTURE 21:

JUNCTION TREE DERIVATION OF HMM INFERENCE

March 29, 2006

HMM JuNcTION TREE

e Cliques of moralized-triangulated: (g¢,q;+1) and (g, y¢).

e Many maximal spanning trees, so many junction trees.
For standard algorithms, select this one:

(% ¥) (qo’ 4Q) (% %) (Gr.2:97)

O

(4 %) (% Y2) (9. Y1)

e Other spanning trees lead to other algorithms.

HMM GRAPHICAL MODEL 1

e Hidden states ¢, observations y;.
e Transition parameters: p(q; 11 = jlqr = 1) = Sij
. Output parameters p(yilg = j = Aj(

?ﬁii@f@

@ ()
e Moralization easy: each node has a single parent.

e Triangulation easy: moralized graph has no cycles.

CLIQUES AND POTENTIALS

e The junction tree with potentials and cliques looks like this:
WAy Y) W(Gp:G) (g,) W(dr,y Gy

¢@y)

Ww(d.. ¥;) W(a,,Y,) w(d.Yy)
e Initialization:

p(q0)p(yolao) = mgyAqgy(y0)
p(QtHHQf) Sqt-,%ﬂ
(vtlgr) = Ag(yt)

(g0, ¥0
V(41 gr+1

)=
) =
(gt yt)
)
)

(-
§(-

I
— =3

MESSAGE PASSING (NO EVIDENCE) 4 MESSAGE PASSING WITH EVIDENCE — COLLECT 6
e Select (q7_1, qr) as the root. o First set the v potentials to introduce evidence:
e COLLECTEVIDENCE(root) generates: vlar, yi) = Agd(ye — y1).
observation messages upwards from (g¢,y¢) to (¢;—1,q¢); and e Now run COLLECT:)
backbone messages from (g:_1, ¢) to (qt, qrs1)- - I_\r/llfrglnahzmg glve*s ZYt (g, yt) f: f:qt(zrt)_ do ¥
s, separato = ply o] ed y;. ol
e DISTRIBUTEEVIDENCE(root) generates: e, separ & (@) = pyilay) for fixed ¥y ‘
- Consider update factors passed to (gt qri1): ‘
correction messages downwards from (g;_1, ¢¢) to (g¢,y¢); and . N N . Vi
backwards from (g, g1 to (gr_1, q1). V¥(ar: ger1) = V(g G410 (90)E" (a141).
ey e (@ ar41) = Sapqr1 9 (@) P(yesala+1).
R P . U - Initialize with ¢*(qo) = p(¥0lg0)p(q0)-
' - Now we can continue along the chain:
¢ ¢l " (@r41) = 2og, U (ats t1) = Dg, Sarqur @ (@) P(Yes1lae+1)
* * e Notice: ¢™(qt) = ¢ = p(yf), qt)
¥ G Yoa) ¥ G Yoa) We have recovered the a recursion automatically.
e After collect, how do we comput L = p(Y)?
MESSAGE PASSING (NO EVIDENCE) 5 CHECK OF ¢* 7

e Upwards messages: v ¥(qt, yt) = >y, P(¥t|qr) = 1 so the
separator potential £*(¢q¢) = 1 is unchanged by marginalization.

e Upwards messages have no effect when no evidence is observed.

e Backbone messages: &*(¢0) = %2y, ¥(d0, ¥0) = P(ao)
(90, 1) = ¥(q0. 01)9" (20) = Plgo. a1) etc...
o All backbone potentials get converted to marginals in COLLECT
phase. Backwards DISTRIBUTE phase has no effect on ¢.

e DISTRIBUTE converts £(g¢) into marginal P(q) and ¥(g¢, y¢) into
marginals P(q¢,y¢). No effect on ¥(q qs11).

(é'(q‘) W% G.q) WG) ‘ﬁ*(qnl)

0(0.,) é(q,)

ACIRS! LACIS)

o Check that ¢*(¢t) = P(yé, Q)

e Initially, ¢*(qo) = p(yolqo)p(q0)-
¢ By induction:

¢ Qt+1

= Z P(qt+1lar) P

= Z P(yh, ye+1, t: de41)
qt

= P(t+17Qt+1)

o After collect, ¥*(gi—1,qt) = p(yh, at—1, at)-

ZSQt7Qt+1¢ (at)P(yi+1lae+1)

(vbs @) P(yti1lae41)

MESSAGE PASSING WITH EVIDENCE — DISTRIBUTE 8

e The DISTRIBUTE call generates backwards updates:

Vgt 1) = YV (@ %+1)M ORI
’ ’ ¢*(qr+1) R

o () = 3 LW Br) s

i O (a1)

K% . W(Qt, Qt-i-l) Kk
¢ (Qt)_qt%zqt w*(%qm)cb (gt+1)

e Now, ¢**(qt) = Lyt = p(qy, yg) No beta!
o After distribute, ¥**(q—1, ar) = p(y() at—1, a0)-

MESSAGE PASSING — NO EVIDENCE 10

e Consider the case when no observations have been made.

* Marginalizing gives > . (qt, y+) = 1 so separator £*(q¢) does not
change. Thus, update factor passed to (g;_1,¢q¢) is unity and

¥(q—1,qt) is also unchanged.
Leaf messages do nothing when no evidence.

e Subsequent distribute pass does not change backbone, but will
convert £(q¢) into marginals p(g¢) and potentials 1(q, y¢) into
marginals p(qt, yt)-

e Why would you ever want to do this?

- tells you about generative behaviour
- can help numerical scaling of algorithms

RECURSIONS 9

e The basic COLLECT-DISTRIBUTE messages allow us to generate
a variety of recursions.

e We chose ¢*(q¢) and ¢**(q¢) which gave the alpha-gamma
recursions for HMM inference.

e Using root (qq, q1) gives beta recursions instead of alpha.

e A recursion on the update factors ¢™*(q;)/0*(q¢) gives the
alpha-beta algorithm.

e Recursions on ¢*(q;_1, q) and ™" (q;_1, q¢) directly gives a new
algorithm known as rho-xi.

