Sam Roweis

1

### LECTURE 21:

JUNCTION TREE DERIVATION OF HMM INFERENCE

March 29, 2006

# HMM GRAPHICAL MODEL

- ullet Hidden states  $q_t$ , observations  $\mathbf{y}_t$ .
- Transition parameters:  $p(q_{t+1} = j | q_t = i) = S_{ij}$
- ullet Output parameters:  $p(\mathbf{y}_t|q_t=j)=A_j(\mathbf{y})$



- Moralization easy: each node has a single parent.
- Triangulation easy: moralized graph has no cycles.

### HMM JUNCTION TREE

• Cliques of moralized-triangulated:  $(q_t, q_{t+1})$  and  $(q_t, \mathbf{y}_t)$ .

• Many maximal spanning trees, so many junction trees. For standard algorithms, select this one:



• Other spanning trees lead to other algorithms.

### CLIQUES AND POTENTIALS

• The junction tree with potentials and cliques looks like this:



• Initialization:

$$\psi(q_0, \mathbf{y}_0) = p(q_0)p(\mathbf{y}_0|q_0) = \pi_{q_0}A_{q_0}(\mathbf{y}_0)$$

$$\psi(q_t, q_{t+1}) = p(q_{t+1}||q_t) = S_{q_t, q_{t+1}}$$

$$\psi(q_t, \mathbf{y}_t) = p(\mathbf{y}_t|q_t) = A_{q_t}(\mathbf{y}_t)$$

$$\phi(\cdot) = 1$$

$$\xi(\cdot) = 1$$

)

- Select  $(q_{T-1}, q_T)$  as the root.
- COLLECTEVIDENCE(root) generates: observation messages upwards from  $(q_t, \mathbf{y}_t)$  to  $(q_{t-1}, q_t)$ ; and backbone messages from  $(q_{t-1}, q_t)$  to  $(q_t, q_{t+1})$ .
- DISTRIBUTE EVIDENCE (root) generates: correction messages downwards from  $(q_{t-1}, q_t)$  to  $(q_t, \mathbf{y}_t)$ ; and backwards from  $(q_t, q_{t+1})$  to  $(q_{t-1}, q_t)$ .



- $\bullet$  First set the  $\psi$  potentials to introduce evidence:  $\psi(q_t, \mathbf{y}_t) = A_{q_t} \delta(\mathbf{y}_t - \bar{\mathbf{y}}_t).$
- Now run COLLECT:
- Now run Collecti.
   Marginalizing gives  $\sum_{\mathbf{y}_t} \psi(q_t, \mathbf{y}_t) = A_{q_t}(\bar{\mathbf{y}}_t)$ .
  Thus, separator  $\xi^*(q_t) = p(\bar{\mathbf{y}}_t|q_t)$  for fixed  $\bar{\mathbf{y}}_t$ .
- Consider update factors passed to  $(q_t, q_{t+1})$ :  $\psi^*(q_t, q_{t+1}) = \psi(q_t, q_{t+1})\phi^*(q_t)\xi^*(q_{t+1}).$  $\psi^*(q_t, q_{t+1}) = S_{q_t, q_{t+1}} \phi^*(q_t) P(\mathbf{y}_{t+1} | q_{t+1}).$
- Initialize with  $\phi^*(q_0) = p(\bar{\mathbf{y}}_0|q_0)p(q_0)$ .
- Now we can continue along the chain:  $\phi^*(q_{t+1}) = \sum_{q_t} \psi^*(q_t, q_{t+1}) = \sum_{q_t} S_{q_t, q_{t+1}} \phi^*(q_t) P(\mathbf{y}_{t+1} | q_{t+1})$
- Notice:  $\phi^*(q_t) = \alpha_t = p(\mathbf{y}_0^t, q_t)$ We have recovered the  $\alpha$  recursion automatically.
- After collect, how do we comput  $L = p(\mathbf{Y})$ ?

# Message Passing (no evidence)

- Upwards messages:  $\sum_{\mathbf{y}_t} \psi(q_t, \mathbf{y}_t) = \sum_{\mathbf{y}_t} p(\mathbf{y}_t|q_t) = 1$  so the separator potential  $\xi^*(q_t) = 1$  is unchanged by marginalization.
- Upwards messages have no effect when no evidence is observed.
- Backbone messages:  $\phi^*(q_0) = \sum_{\mathbf{y}_0} \psi(q_0, \mathbf{y}_0) = P(q_0)$   $\psi^*(q_0, q_1) = \psi(q_0, q_1)\phi^*(q_0) = P(q_0, q_1)$ etc...
- All backbone potentials get converted to marginals in COLLECT phase. Backwards DISTRIBUTE phase has no effect on  $\phi$ .
- DISTRIBUTE converts  $\xi(q_t)$  into marginal  $P(q_t)$  and  $\psi(q_t, \mathbf{y}_t)$  into marginals  $P(q_t, \mathbf{y}_t)$ . No effect on  $\psi(q_t, q_{t+1})$ .



# Check of $\phi^*$

- Check that  $\phi^*(q_t) = P(\mathbf{y}_0^t, q_t)$ .
- Initially,  $\phi^*(q_0) = p(\bar{\mathbf{y}}_0|q_0)p(q_0)$ .
- By induction:

$$\phi^*(q_{t+1}) = \sum_{q_t} S_{q_t, q_{t+1}} \phi^*(q_t) P(\mathbf{y}_{t+1} | q_{t+1})$$

$$= \sum_{q_t} P(q_{t+1} | q_t) P(\mathbf{y}_0^t, q_t) P(\mathbf{y}_{t+1} | q_{t+1})$$

$$= \sum_{q_t} P(\mathbf{y}_0^t, \mathbf{y}_{t+1}, q_t, q_{t+1})$$

$$= P(\mathbf{y}_0^{t+1}, q_{t+1})$$

• After collect,  $\psi^*(q_{t-1}, q_t) = p(\mathbf{y}_0^t, q_{t-1}, q_t)$ .

10

• The DISTRIBUTE call generates backwards updates:

$$\psi^{**}(q_{t}, q_{t+1}) = \psi^{*}(q_{t}, q_{t+1}) \frac{\phi^{**}(q_{t+1})}{\phi^{*}(q_{t+1})} \cdots \frac{\phi^{*}(q_{t}, q_{t+1})}{\phi^{*}(q_{t+1})} \cdots \frac{\phi^{*}(q_{t+1})}{\phi^{*}(q_{t+1})} \cdots \frac{\phi^{*}(q_{t+1})}{\phi^{*}$$

- ullet Now,  $\phi^{**}(q_t) = L\gamma_t = p(q_t, \mathbf{y}_0^T)$ . No beta!
- After distribute,  $\psi^{**}(q_{t-1}, q_t) = p(\mathbf{y}_0^T, q_{t-1}, q_t)$ .

- Consider the case when no observations have been made.
- Marginalizing gives  $\sum_{\mathbf{y}_t} \psi(q_t, \mathbf{y}_t) = 1$  so separator  $\xi^*(q_t)$  does not change. Thus, update factor passed to  $(q_{t-1}, q_t)$  is unity and  $\psi(q_{t-1}, q_t)$  is also unchanged. Leaf messages do nothing when no evidence.
- ullet Subsequent distribute pass does not change backbone, but will convert  $\xi(q_t)$  into marginals  $p(q_t)$  and potentials  $\psi(q_t,\mathbf{y}_t)$  into marginals  $p(q_t,\mathbf{y}_t)$ .
- Why would you ever want to do this?
- tells you about generative behaviour
- can help numerical scaling of algorithms

### RECURSIONS

g

- The basic COLLECT-DISTRIBUTE messages allow us to generate a variety of recursions.
- We chose  $\phi^*(q_t)$  and  $\phi^{**}(q_t)$  which gave the alpha-gamma recursions for HMM inference.
- Using root  $(q_0, q_1)$  gives beta recursions instead of alpha.
- ullet A recursion on the update factors  $\phi^{**}(q_t)/\phi^*(q_t)$  gives the alpha-beta algorithm.
- Recursions on  $\psi^*(q_{t-1}, q_t)$  and  $\psi^{**}(q_{t-1}, q_t)$  directly gives a new algorithm known as rho-xi.