
CSC412 – Probabilistic Learning & Reasoning Sam Roweis

Lecture 18:

Junction Trees

March 20, 2006

Efficient Probabilistic Inference 1

• We want to efficiently compute the posterior p(xF |xE) over query

nodes xF , conditioned on evidence nodes xE while integrating out

marginal nodes xR when the joint distribution is represented by a
directed or undirected graphical model.

• For some models (e.g. mixtures and factor analysis), this was an
easy application of Bayes rule. For a single node posterior (i.e. xF

is a single node), there was a simple elimination algorithm. But it
required a node ordering to be given, which told it which order to
do the summations in and work could not be reused.

• We seek a general algorithm that is correct and takes advantage of
the Markov properties of the graphical model to decompose a
general calculation into a linked set of local computations.

• For tree-structured graphical models, there was the efficient Belief
Propagation algorithm, but it didn’t work on general DAGs.

Belief Propagation (Sum-Product) Algorithm 2

• Choose a root node arbitrarily.

• If j is an evidence node, ψE(xj) = δ(xj, x̄j), else ψE(xj) = 1.

• Pass messages from leaves up to root and then back down using:

mji(xi) =
∑

xj



ψE(xj)ψ(xi, xj)
∏

k∈c(j)

mkj(xj)





• Compute node marginals using the product of incoming messages:

p(xi|x̄E) ∝ ψE(xi)
∏

k∈c(i)

mki(xi)

i

j

k

i

j

k (a) (b)

Junction Trees: Beyond Trees 3

• What can we do if the underlying graph is not a tree?

• Belief Propagation was efficient in its data structures and reuse of
message computations, but it only works on trees.

•Eliminate worked on all directed acyclic graphs, but it was
inefficient and depended on the query (elimination ordering).

• Can we get the best of both worlds and discover a “tree-like” data
structure and message passing system to do efficient inference even
when the underlying graph is not a tree?

• Yes, using a family of algorithms called junction tree algorithms.

• Let’s go back and see what made Eliminate work...

1X

2X

3X

X 4

X 5

X6



Elimination Cliques 4

• During a run of Elimination, we remove nodes by summing
them out and then couple their remaining neighbours.

• Sets of nodes that get coupled at any point during the run are
called elimination cliques.
e.g. for the order x6, x5, x4, x3, x2, x1 we have:

1X

2X

3X

X 4

X 5

X6

X62X X 5, ,{ }

3X2X X 5, ,{ }

2X ,{ }X 4

3X, ,{ }1X 2X

,{ }1X 2X

1X{ }

(a) (b)

X62X X 5

2X X 4

1X

3X2X X 5

3X1X 2X1X 2X

(c)

Node Elimination 5

• We eliminate nodes from the graph one by one.
For directed graphs we moralize and drop edge directions.
For undirected graphs:

foreach node xi in ordering I:

connect all the neighbours of xi
remove xi from the graph

end

• The removal operation requires summing out xi.

• Summing out xi leaves a function involving all its previous
neighbours and thus they become connected by this step.

• If we imagine adding an edge to the graph every time a run of
Eliminate occurs, the original graph becomes augmented.

• The original graph, augmented by all the added edges is now a
triangulated graph. These added edges are why Eliminate works.

Added Edges == Triangulation 6

1X

2X

3X

X 4

X 5

X6

(a) ⇒

1X

2X

3X

X 4

X 5

X6

1X

2X

3X

X 4

X 5

X6

(b)

1X

2X

3X

X 4

X 5

(c)

1X

2X

3X

X 4

(d)

1X

2X

3X

(e)

1X

2X

(f)

1X

(g)

Triangulated Graph == undirected graph with no “chordless cycles”
a “chordless cycle” has no edges between nodes that are not sucessors

Elimination Cliques are
Cliques of Triangulated Graph 7

• The elimination cliques created during a run are exactly the
maximal cliques of the (moralized) triangulated version of the
original graph.

1X

2X

3X

X 4

X 5

X6

1X

2X

3X

X 4

X 5

X6

X62X X 5, ,{ }

3X2X X 5, ,{ }

2X ,{ }X 4

3X, ,{ }1X 2X

,{ }1X 2X

1X{ }

(a) (b)

X62X X 5

2X X 4

1X

3X2X X 5

3X1X 2X1X 2X

(c)



Elimination Clique Trees 8

• As we sum out or condition on variables, we need to pass
information between these storage sites (elimination cliques).

•Elimination essentialy creates a tree of cliques during each run
based on the elimination ordering. Each ordering may create a
different clique tree, and may triangulate the graph differently.

• Information flows only along one path: from the first clique (created
by eliminating the first variable in the order) to the last clique.

• Our goal is to create a more flexible “hypergraph” connecting the
cliques so that information can flow in many ways.

• In fact, this is what belief propagation (sum-product) does.
It created elimination clique trees in which information could flow in
both directions across the links. But for trees, there are no
undirected cycles, so all elimination orderings produced the same
unique clique tree.

Separator Sets 9

• We can explicitly show what information will be communicated
from clique to clique in a clique tree by taking the intersection of
variables in adjacent cliques.

• These intersections are called separator sets and are themselves
cliques (fully connected in the moralized, triangulated graph)
although of course they are no longer maximal.

X62X X 5

2X X 4

1X

3X2X X 5

3X1X 2X1X 2X

2X X 52X X 3

2X

1X 2X1X

Junction Trees 10

• Idea: triagulate non-tree graphs to get a set of cliques and arrange
these cliques into a tree. Then do BP on this tree.

• But not all clique trees are equal! If, for every variable, all
occurances of the variable appear in a connected subtree, then the
clique tree has the junction tree property, and this is very desirable.

X62X X 5

2X X 4

1X

3X2X X 5

3X1X 2X1X 2X

e.g. this clique tree does not have the j-tree property (x3)

• Imagine arranging the elimination cliques into a tree structure.
Q: Which structure should we pick for efficient calculations?
A: One in which local information transfer is sufficient to update all
necessary quantities. More on this later.

Potentials on Junction Trees 11

Here is the setup for our general inference algorithm so far:

1. Start with a moralized, triangulated graph G(V,E) and identify its
maximal cliques C. (For triangulated graphs this is easy.)
These correspond to the elimination cliques we had previously.

2. Arrange the cliques into a tree that has the junction tree property.

3. Associate a potential function with each clique in this hypergraph,
and define the joint probability as the product of these potentials:

p(X) =
1

Z

∏

cliques c

ψc(xc) Z =
∑

X

∏

cliques c

ψc(xc)

very similar to setup for undirected models, except that the cliques
here are maximal, whereas in undirected graphs they might not be.

4. Initialize these potentials so that they represent the correct model.
Then try to condition and marginalize to perform inference by
running belief propagation on this tree.



Initializing Potentials 12

• How do we initialize the potentials of the clique tree (hypergraph)
based on the original graphical model so that the distribution is
correctly represented?

• Easiest case: original graphical model is undirected, triangulated
and its cliques already correspond to the maximal cliques.
Then we just assign potentials in a one-to-one fashion.

• Next easiest case: original model is undirected, and triangulated
but with non-maximal cliques.

1. Assign any potential completely contained within only a single
maximal clique to that clique.

2. Assign potentials that are contained by more than one clique
arbitrarily to exactly one of them.
Multiple ways to do this.

Initializing from Undirected Graphs 13

D

A

C

B
ψAB
ψAC
ψBC
ψBD
ψCD

• Two choices:

ψABC = ψABψAC
ψBCD = ψBCψBDψCD

OR
ψABC = ψABψACψBC
ψBCD = ψBDψCD

• Each underlying undirected graph potential gets assigned to
one and only one clique potential in the junction tree.

Initializing from Directed Graphs: Moralization 14

• How do we initialize from an underlying directed graph?

• Same idea, but with a slight complication: for directed graphs, the
parents may not be explicitly connected, but they are involved in
the same “potential” function p(xi|xπi),
(i.e. parental conditionals can have sets of arguments that are not
contained in any maximal clique if the parents are not connected.)

• To handle this we moralize the graph:
link parents and drop directions of edges.

1X

2X

3X

X 4

X 5

X6

⇒

1X

2X

3X

X 4

X 5

X6

Moralization 15

• Now the conditionals are guaranteed to be functions on cliques and
we proceed as above (plus these will be automatically normalized).

• Caution: moralization adds edges to the graph and converts it to
an undirected model. So it changes the semantics.

• All original dependencies are still possible.
But we may have lost some conditional independencies.

• Moralization is essential: since conditioning couples parents in
directed models (“explaining away”) we need a mechanism for
respecting this when we do inference.

1X

2X

3X

X 4

X 5

X6
1X

2X

3X

X 4

X 5

X6

(a) (b)



Looking Ahead 16

Summary so far:

1. Identify maximal cliques of underlying triangulated graph. (easy)

2. Arrange cliques into junction tree.

3. Associate potentials with each clique.

4. Initialize (moralizing first if necessary) by assigning potentials or
conditionals from the underlying graphical model to clique
potentials in the junction tree.

5. Coming up next: introducing evidence (conditioning).

6. And then: marginalizing.

The plan from here onwards:

• We will break the general inference problem into two parts:

1. Condition on what we observe (evidence).

2. Then marginalize out anything we need to (sum).


