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Reminder: HMM Graphical Model 1
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• Hidden states {xt}, outputs {yt}
Joint probability factorizes:

P({x}, {y}) =
T
∏

t=1

P(xt|xt−1)P(yt|xt)

= πx1

T−1
∏

t=1

Sxt,xt+1

T
∏

t=1

Axt(yt)

•We saw efficient recursions for computing
L = P({y}) =

∑

{x} P({x}, {y}) and γi(t) = P(xt = i|{y}).

Baum-Welch Algorithm: EM Training 2

1. Intuition: if only we knew the true state path then ML parameter
estimation would be trivial (MM1 on x, conditional on y).

2. But: can estimate state path using inference recursions.

3. Baum-Welch algorithm (special case of EM): estimate the states,
then compute params, then re-estimate states, and so on . . .

4. This works and we can prove that it always improves likelihood.

5. However: finding the ML parameters is NP complete, so initial
conditions matter a lot and convergence is hard to tell.
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Parameter Estimation using EM 3

• Sij are transition probs; state j has output distribution Aj(y)

P(xt+1 = j|xt = i) = Sij P(x1 = j) = πj

P(yt = y|xt = j) = Aj(y)

• Complete log likelihood:

log p(x, y) = log{πx1

T−1
∏

t=1

Sxt,xt+1

T
∏

t=1

Axt(yt)}

= log{
∏

i

π
[x1=i]
i

T−1
∏

t=1

∏

ij

S
[xt=i,xt+1=j]
ij

T
∏

t=1

∏

k

Ak(yt)
[xt=k]}

=
∑

i

[x1=i] log πi+
T−1
∑

t=1

∑

ij

[xt=i, xt+1=j] log Sij +
T

∑

t=1

∑

k

[xt = k] log Ak(yt)

where the indicator [xt = i] equals 1 if xt = i and 0 otherwise

• For EM, we need to compute the expected complete log likelihood.



State expectations required from the E-Step 4

• The expected complete log likelihood requires
γi(t) =< [xt = i] > and ξij(t) =< [xt = i, xt+1 = j] >

• So in the E-step we need to compute both
γi(t) = p(xt = i|{y}) and ξij(t) = p(xt = i, xt+1 = j|{y}).

•We already know how to compute γi(t) using α and β recursions.
We can compute ξij(t) the same way (recall BP):

ξij(t) = p(xt = i, xt+1 = j|{y}) = p(xt = i|{y})p(xt+1 = j|xt = i, {y})

= p(xt = i, yt
1|y

T
t+1)p(xt+1 = j|xt = i, yT

t+1)/p(yt
1|y

T
t+1)

=
p(xt = i, yt

1)p(yT
t+1|xt = i, yt

1)

p(yt
1
|yT

t+1
)p(yT

t+1
)

p(yT
t+1|xt+1 = j, xt = i)p(xt+1 = j|xt = i)

p(yT
t+1

|xi = t)

=
p(xt = i, yt

1)p(yT
t+1|xt = i)

p(yT
1
)

p(yt+1|xt+1 = j)p(yT
t+2|xt+1 = j)p(xt+1 = j|xt = i)

p(yT
t+1

|xi = t)

= αi(t)Aj(yt+1)Sijβj(t + 1)/L

Recall: ys
r is a shorthand for the subsequence yr, . . . , ys and {y} is a shorthand

for the entire sequence y1, . . . , yT .

M-step: New Parameters are just
Ratios of Frequency Counts 5

• Initial state distribution: expected #times in state i at time 1:

π̂i = γi(1)

• Expected #transitions from state i to j which begin at time t:

ξij(t) = αi(t)SijAj(yt+1)βj(t + 1)/L

so the estimated transition probabilities are:

Ŝij =
T−1
∑

t=1

ξij(t)

/

T−1
∑

t=1

γi(t)

• The output distributions are the expected number of times we
observe a particular symbol in a particular state:

Âj(y0) =
∑

t|yt=y0

γj(t)

/

T
∑

t=1

γj(t)

HMM Practicalities 6

•Multiple observation sequences: can be dealt with by averaging
numerators and averaging denominators in the ratios given above.

• Initialization: mixtures of Naive Bayes or mixtures of Gaussians

• Numerical scaling: the probability values that the bugs carry get
tiny for big times and so can easily underflow. Good rescaling trick:

ρt = P(yt|y
t−1

1 ) α(t) = α̃(t)
t

∏

t′=1

ρt′

or represent all probabilities as logs and use logsum

Profile (String-Edit) HMMs 7

i = insert d = delete m = match

m1 m2 m3 mT

iT

dTd3

i3i2

d2d1

i1

(state transition diagram)

• A “profile HMM” or “string-edit” HMM is used for probabilistically
matching an observed input string to a stored template pattern
with possible insertions and deletions.

• Three kinds of states: match, insert, delete.
mn – use position n in the template to match an observed symbol
in – insert extra symbol(s) observations after template position n
dn – delete (skip) template position n



DP for Profile HMMs 8

• How do we fill in
the costs for a DP
grid using a
string-edit HMM?

• Almost the same as
normal except:

– Now the grid is 3
times its normal
height.

– It is possible to
move down
without moving
right if you move
into a deletion
state.

eg: template length=4, test sequence length=5
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String-Edit HMM Grid Costs 9

Cx → x′ = − log Tx,x′ − log Ax′(yt) if x′ is match or insert

Cx → x′ = − log Tx,x′ if x′ is a delete state

State x ∈ {mn, in, dn}
has nonzero transition
probabilities only to states
x′ ∈ {mn+1, in, dn+1}.
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Forward-Backward for Profile HMMs 10

• The equations for the delete states in profile HMMs need to be
modified slightly, since they don’t emit any symbols.

• For delete states k, the forward equations become:

αk(t) =
∑

j

αj(t)Sjk

which should be evaluated after the insert and match state updates.

• For all states, the backward equations become:

βk(t) =
∑

i∈match,ins

Skiβi(t + 1)Ai(yt+1) +
∑

j∈del

Skjβj(t)

which should be evaluated first for delete states k; then for the rest.

• The gamma equations remain the same:

γi(t) = p(xt = i | yT
1 ) = αi(t)βi(t)/L

• Notice that each summation above contains only three terms,
regardless of the number of states!

Profile HMMs have Linear Costs 11

i = insert d = delete m = match

m1 m2 m3 mT

iT

dTd3

i3i2
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i1

(state transition diagram)

• number of states = 3(length template)

•Only insert and match states can generate output symbols.

•Once you visit or skip a match state you can never return to it.

• At most 3 destination states from any state, so Sij very sparse.

• Storage/Time cost linear in #states, not quadratic.

• State variables and observations no longer in sync.
(e.g. y1:m1 ; d2 ; y2:i2 ; y3:i2 ; y4:m3 ; . . .)



Initializing Forward-Backward for Profile HMMs 12

• The initialization equations for Profile HMMs also need to be fixed
up, to reflect the fact that the model can only begin in states
m1, i1, d1 and can only finish in states mN , iN , dN .

• In particular, πj = 0 if j is not one of m1, i1, d1.

•When initializing αk(1), delete states k have zeros, and all other
states have the product of the transition probabilities through only
delete states up to them, plus the final emission probability.

•When initializing βk(T ), the same kind of adjustment must be
made.

M-step for Profile HMMs 13

• The emission probabilities Aj() for match and insert states and the
initial state distribution π (for m1, i1, d1) are updated exactly as in
the regular M-step.

• The expected #transitions from state i to j which begin at time t
are different when j is a delete state:

ξij(t) = αi(t)Sijβj(t)/L

• Given this change, the updates to the transition parameters is the
same as in the normal M-step.

Symbol HMM Example 14

• Character sequences (discrete outputs)

−
*

9

A B C D E
F GH I J

K L M N O

P Q R ST
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F G H IJ
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U V W X Y
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UVWX Y
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AB C D E
F G H I J

K L M N O

P Q R ST
U V W X Y

Mixture HMM Example 15

• Geyser data (continuous outputs)
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