CSC412 — Probabilistic Learning & Reasoning Sam Roweis

LECTURE 17:

ProriLE HMMs & HIDDEN MARKOV MODEL LEARNING

BAUM-WELCH ALGORITHM: EM TRAINING 2

1. Intuition: if only we knew the true state path then ML parameter
estimation would be trivial (MM1 on z, conditional on ).

2. But: can estimate state path using inference recursions.

3. Baum-Welch algorithm (special case of EM): estimate the states,

then compute params, then re-estimate states, and so on ...

4. This works and we can prove that it always improves likelihood.

5. However: finding the ML parameters is NP complete, so initial

conditions matter a lot and convergence is hard to tell.
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e Hidden states {x;}, outputs {y;}
Joint probability factorizes:
T

P{z}, {y}) = H (zt|zi—1)P(yt|oe)

= Ty H Sxt,xtﬂ H Alt(yt)
t=1 t=1

e We saw efficient recursions for computing

L =P({y}) = (o PUx}. {y}) and 5(t) = Play = il{y})

e S;j are transition probs; state j has output distribution A,(y)
P(xt—b—l = ]‘{L‘t = Z) = S” P(x1 = ]) =T
P(yt = ylzt = j) = A;(y)
e Complete log likelihood:

T-1 T
logp(z, y) = log{ma; [T Swparir [T Aw(ye)}
t.l t=1 -
_ log{HW,[Ell =i H Hs[ﬁ‘ 0,21 41=]] H HAk [rt k}
; t=1 1y t=1 k
T
= Z r1=i Ogﬂﬁz > lwr=i, ap1=j]log Sij+> > [xr = kllog Ap(yt)
t=1 1ij t=1 k

Where the indicator [z; = 7] equals 1 if z; = ¢ and 0 otherwise

e For EM, we need to compute the expected complete log likelihood.




STATE EXPECTATIONS REQUIRED FROM THE E-STEP 4

e The expected complete log likelihood requires
Vi(t) =<[ve=1i] > and &;(t) =<zt =1i,2441 =j] >
e So in the E-step we need to compute both
7i(t) = plzr = il{y}) and &§;(t) = p(ar = i, 3411 = j{y}).
e We already know how to compute v;(¢) using o and 3 recursions.
We can compute &;;(t) the same way (recall BP):
fu( ) (L’f =1,T41 = 7|{‘/}> (ﬁt = i|{y})p(a;,,+1 = .j|fL’t =1, {U})
= p(z; =1, Z/1|yz+1) (e1 = jlze =4, ytT+1)/P<yi|ytT+1)
_ plae =i y)p(iale = i D) i |2 = 5 2 = Dp(aee = jloe = 0)
P Iyt )p(ia) Py loi =1)
_plae =4,y )p(yl e = ) plyea e = Dpyloleen = Hpleia = jlag = 1)

HMM PRACTICALITIES 6

- ply}) Pyfalzi=1)
= ai(t)Aj (Y1) Sy Bi(t + 1)/ L
Recall: 3¢ is a shorthand for the subsequence y,, ..., ys and {y} is a shorthand

for the entire sequence ¥, ..., yr.

e Multiple observation sequences: can be dealt with by averaging
numerators and averaging denominators in the ratios given above.

e Initialization: mixtures of Naive Bayes or mixtures of Gaussians

e Numerical scaling: the probability values that the bugs carry get
tiny for big times and so can easily underflow. Good rescaling trick:

pe=Plydyi™)  alt)=a) [ o

or represent all probabilities as logs and use logsum

M-STEP: NEW PARAMETERS ARE JUST
RATIOS OF FREQUENCY COUNTS 5

e Initial state distribution: expected #times in state ¢ at time 1:
T = vi(1)
e Expected #transitions from state ¢ to j which begin at time ¢:
ij(t) = i(t)S;jA(yr+1)Bi(t + 1)/ L
so the estimated transition probabilities are:

T-1 T-1
Sij= > &) [ D> wult)
=1 =1

e The output distributions are the expected number of times we
observe a particular symbol in a particular state:

T
> () 217j(t>
=

tly=vo

PROFILE (STRING-EDIT) HMMS 7

——

(state transition diagram)

i = insert d =delete m =match

o A “profile HMM" or “string-edit” HMM is used for probabilistically
matching an observed input string to a stored template pattern
with possible insertions and deletions.

e Three kinds of states: match, insert, delete.
my — use position n in the template to match an observed symbol
in — insert extra symbol(s) observations after template position n
dp, — delete (skip) template position n




DP ror PrOFILE HMMS

o How do we fill in
the costs for a DP

eg: template length=4, test sequence length=>b

FORWARD-BACKWARD FOR PROFILE HMMS 10

e The equations for the delete states in profile HMMs need to be
modified slightly, since they don't emit any symbols.

ri in % . . . )
& d USINg 2 * o For delete states k, the forward equations become:
string-edit HMM? S . o o =Y a;()s
L] ° ) — Qs
e Almost the same as E . . . : _ ; IRk
RIS PN WD g/ SN SNSRI T
normal except: 2 . o o o« = which should be evaluated after the insert and match state updates.
—Now the grid is 3 2 ® ® * i g e For all states, the backward equations become:
times its normal 8 i ° ° ° o ©
height. 2 R . . « o E Br(t) = > - Skilit + 1 Ai(yee) + 'Z SiiBj(t)
_ _ o T T Te)) T e T e T T e T T e 2 t€match,ins j€del
— It is possible to 5 . . . which should be evaluated first for delete states k; then for the rest.
move down @ . .
. : © ° * . e The gamma equations remain the same:
without moving o o ° ° .
C (/L
right if you move yl —y2 y3 y4 y5 %i(t) = plet =i |y ) = a;(1)53i(t)/
into a deletion Test Sequence Position o Notice that each summation above contains only three terms,
state. regardless of the number of states!
STRING-EDIT HMM GRID COSTS 9 PrOFILE HMMS HAVE LINEAR COSTS 11
C,_, w=—logT, ,»—log A,(y) if 2’ is match or insert
C,_ p=—logT, . if 2’ is a delete state
3 [ ] [ ] [ ] ]
§ [ ] L [ ] [}
E [ ] [ ] [ ] [ ]
[ ] [} [ ] [} ’_ﬂ;
Sy e T o ___;____;____.__-E i=i = = tate t ition di
State x € {my, in,dn} é . . . . , 5 i = insert d=delete m=match (state transition diagram)
has nonzero transition |5 . o R e o 5 e number of states = 3(length template)
probabilities only to states S e e s e E e Only insert and match states can generate output symbols.
" : n ° ° . ° o =
7€ {Mn150n; dn1 ) 5 < o o o e Once you visit or skip a match state you can never return to it.
o :l ‘> ° ° ° e At most 3 destination states from any state, so S;; very sparse.
© o b L L . . . .
yl  y2 y3 y4 5 e Storage/Time cost linear in #states, not quadratic.

Test Sequence Position

e State variables and observations no longer in sync.
(e.g. yliml ; d2; y2:i2 ; y3:i2 ; yAm3; ...)




INITIALIZING FORWARD-BACKWARD FOR PROFILE HMMS 12

e The initialization equations for Profile HMMs also need to be fixed
up, to reflect the fact that the model can only begin in states
m1,i1,d; and can only finish in states mp, iy, dy.

e In particular, 7; = 0 if j is not one of my,11,d;.

e When initializing c.(1), delete states k have zeros, and all other
states have the product of the transition probabilities through only
delete states up to them, plus the final emission probability.

e When initializing (1.(T), the same kind of adjustment must be
made.

SymMBoL. HMM EXAMPLE
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e Character sequences (discrete outputs)

O
S
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M-sTEP FOR PROFILE HMMSs 13

e The emission probabilities A;() for match and insert states and the
initial state distribution 7 (for m, i1, d;) are updated exactly as in
the regular M-step.

e The expected #transitions from state ¢ to j which begin at time ¢
are different when j is a delete state:

&ij(t) = ai(t)Si;05(t)/ L

o Given this change, the updates to the transition parameters is the
same as in the normal M-step.

MixTurRE HMM EXAMPLE
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e Geyser data (continuous outputs)

11

State output functions

100-
90

80

y2

70

60

50




