
CSC412 – Probabilistic Learning & Reasoning Sam Roweis

Lecture 17:

Inference for Profile HMMs

March 15, 2006

Reminder: HMM Graphical Model 1

PSfrag replacements

x1

y1

x2

y2

x3

y3

xT

yT

• Hidden states {xt}, outputs {yt}
Joint probability factorizes:

P({x}, {y}) =
T∏

t=1

P(xt|xt−1)P(yt|xt)

= πx1

T−1∏

t=1

Sxt,xt+1

T∏

t=1

Axt(yt)

• We saw efficient recursions for computing
L = P({y}) =

∑
{x} P({x}, {y}) and γi(t) = P(xt = i|{y}).

Forward-Backward (αβ) Inference Recursions 2

• Estimate the marginal over a single hidden state:

γ(xt) = p(xt|{y} =
α(xt)β(xt)

p(yT
1)

where αj(t) = p(y
t
1 , xt = j)

βj(t) = p(yT
t+1 | xt = j)

γi(t) = p(xt = i | yT
1)

• There are simple recursions for αj(t) and βj(t):

αk(t + 1) = {
∑

j

αj(t)Sjk}Ak(yt+1); αj(1) = πjAj(y1)

βj(t) =
∑

i

Sjiβi(t + 1)Ai(yt+1); βj(T) = 1

• αi(t) gives total inflow of prob. to node (t, i)
βi(t) gives total outflow of prob.

Viterbi Decoding 3

• The numbers γj(t) above gave the probability distribution over all
states at any time.

• By choosing the state γ∗(t) with the largest probability at each
time, we can make a “best” state path. This is the path with the
maximum expected number of correct states.

• But it is not the single path with the highest likelihood of
generating the data. In fact it may be a path of prob. zero!

• To find the single best path, we do Viterbi decoding which is just
Bellman’s dynamic programming algorithm applied to this problem.

• The recursions look the same, except with max instead of
∑

.

• Bugs once more: same trick except at each step kill all bugs but
the one with the highest value at the node.

Profile (String-Edit) HMMs 4

i = insert d = delete m = match

m1 m2 m3 mT

iT

dTd3

i3i2

d2d1

i1

(state transition diagram)

• A “profile HMM” or “string-edit” HMM is used for probabilistically
matching an observed input string to a stored template pattern
with possible insertions and deletions.

• Three kinds of states: match, insert, delete.
mn – use position n in the template to match an observed symbol
in – insert extra symbol(s) observations after template position n
dn – delete (skip) template position n

Forward-Backward for Profile HMMs 5

• The equations for the delete states in profile HMMs need to be
modified slightly, since they don’t emit any symbols.

• For delete states k, the forward equations become:

αk(t) =
∑

j

αj(t)Sjk

which should be evaluated after the insert and match state updates.

• For all states, the backward equations become:

βk(t) =
∑

i∈match,ins

Skiβi(t + 1)Ai(yt+1) +
∑

j∈del

Skjβj(t)

which should be evaluated first for delete states k; then for the rest.

• The gamma equations remain the same:

γi(t) = p(xt = i | yT
1) = αi(t)βi(t)/L

• Notice that each summation above contains only three terms,
regardless of the total number of states!

Profile HMMs have Linear Costs 6

i = insert d = delete m = match

m1 m2 m3 mT

iT

dTd3

i3i2

d2d1

i1

(state transition diagram)

• number of states = 3(length template)

• Only insert and match states can generate output symbols.

• Once you visit or skip a match state you can never return to it.

• At most 3 destination states from any state, so Sij very sparse.

• Storage/Time cost linear in #states, not quadratic.

• State variables and observations no longer in sync.
(e.g. y1:m1 ; d2 ; y2:i2 ; y3:i2 ; y4:m3 ; . . .)

Initializing Forward-Backward for Profile HMMs 7

• The initialization equations for Profile HMMs also need to be fixed
up, to reflect the fact that the model can only begin in states
m1, i1, d1 and can only finish in states mN , iN , dN .

• In particular, πj = 0 if j is not one of m1, i1, d1.

• When initializing αk(1), delete states k have zeros, and all other
states have the product of the transition probabilities through only
delete states up to them, plus the final emission probability.

• When initializing βk(T), similar adjustments must be made.

• To enforce the condition that the model finishes in states
mN , iN , dN , we create a special END state, accessible only from
mN , iN , dN , and append a special “END” symbol in the final
position of each sequence. We then define A(END, k) to be zero
unless k is the END state, in which case A(END, k) is one.
[A(z, END) is also zero for any z other than the END symbol.]

M-step for Profile HMMs 8

• The emission probabilities Aj() for match and insert states and the
initial state distribution π (for m1, i1, d1) are updated exactly as in
the regular M-step.

• The expected #transitions from state i to j which begin at time t
are different when j is a delete state:

ξij(t) = αi(t)Sijβj(t)/L

• Given this change, the updates to the transition parameters is the
same as in the normal M-step.

Symbol HMM Example 9

• Character sequences (discrete outputs)

−
*

9

A B C D E
F GH I J

K L M N O

P Q R ST
U V WX Y

−
*

9

AB C D E

F G H IJ

K L M N O
P Q R S T

U V W X Y

−

*

9

A BCDE

F G H I J

K L MNO

P Q R ST
UVWX Y

−

*

9

AB C D E
F G H I J

K L M N O

P Q R ST
U V W X Y

Mixture HMM Example 10

• Geyser data (continuous outputs)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
40

50

60

70

80

90

100

110

y1

y2

State output functions

Some HMM History 11

• Markov (’13) and later Shannon (’48,’51) studied Markov chains.

• Baum et. al (BP’66, BE’67, BS’68, BPSW’70, B’72) developed
much of the theory of “probabilistic functions of Markov chains”.

• Viterbi (’67) (now Qualcomm) came up with an efficient optimal
decoder for state inference.

• Applications to speech were pioneered independently by:

– Baker (’75) at CMU (now Dragon)

– Jelinek’s group (’75) at IBM (now Hopkins)

– communications research division of IDA (Ferguson ’74
unpublished)

• Dempster, Laird & Rubin (’77) recognized a general form of the
Baum-Welch algorithm and called it the EM algorithm.

• A landmark open symposium in Princeton (’80) hosted by IDA
reviewed work till then.

