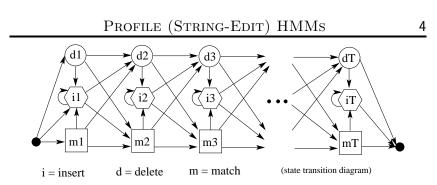
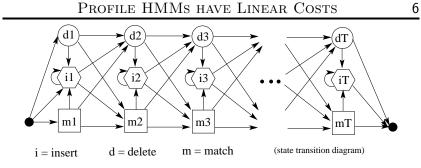
CSC(11) Drahakilistia Learning & Descening Som Deursia	Forward-Backward ($\alpha\beta$) Inference Recursions 2
CSC412 – Probabilistic Learning & Reasoning Sam Roweis	• Estimate the marginal over a single hidden state:
	$\gamma(x_t) = p(x_t \{ \mathbf{y} \} = \frac{\alpha(x_t)\beta(x_t)}{p(\mathbf{y}_1^T)}$
Lecture 17:	where $\alpha_j(t) = p(\mathbf{y}_1^t, x_t = j)$ $\beta_j(t) = p(\mathbf{y}_{t+1}^T x_t = j)$ $\gamma_i(t) = p(x_t = i \mathbf{y}_1^T)$
INFERENCE FOR PROFILE HMMS	
	• There are simple recursions for $\alpha_j(t)$ and $\beta_j(t)$: $\alpha_k(t+1) = \{\sum_j \alpha_j(t)S_{jk}\}A_k(\mathbf{y}_{t+1}); \qquad \alpha_j(1) = \pi_jA_j(\mathbf{y}_1)$ $\beta_j(t) = \sum_i S_{ji}\beta_i(t+1)A_i(\mathbf{y}_{t+1}); \qquad \beta_j(T) = 1$
March 15, 2006	$\beta_j(t) = \sum_{i} S_{ji} \beta_i(t+1) A_i(\mathbf{y}_{t+1}); \qquad \beta_j(T) = 1$
	• $\alpha_i(t)$ gives total <i>inflow</i> of prob. to node (t, i) $\beta_i(t)$ gives total <i>outflow</i> of prob.
Reminder: HMM Graphical Model 1	VITERBI DECODING 3
$(x_1) \longrightarrow (x_2) \longrightarrow (x_3) \longrightarrow \cdots \longrightarrow (x_T)$	\bullet The numbers $\gamma_j(t)$ above gave the probability distribution over all states at any time.
• Hidden states $\{x_t\}$, outputs $\{\mathbf{y}_t\}$	• By choosing the state $\gamma_*(t)$ with the largest probability at each time, we can make a "best" state path. This is the path with the maximum expected number of correct states.
Joint probability factorizes: $P(\lbrace x \rbrace \ \lbrace \mathbf{v} \rbrace) = \prod_{i=1}^{T} P(x_t x_{t-1}) P(\mathbf{v}_t x_t)$	 But it <i>is not</i> the single path with the highest likelihood of generating the data. In fact it may be a path of prob. zero!
$P(\{x\},\{\mathbf{y}\}) = \prod_{t=1}^{T} P(x_t x_{t-1})P(\mathbf{y}_t x_t)$	• To find the single best path, we do <i>Viterbi decoding</i> which is just Bellman's dynamic programming algorithm applied to this problem.
$= \pi_{x_1} \prod_{t=1} S_{x_t, x_{t+1}} \prod_{t=1} A_{x_t}(\mathbf{y}_t)$	• The recursions look the same, except with \max instead of \sum .
• We saw efficient recursions for computing $L = P(\{\mathbf{y}\}) = \sum_{\{x\}} P(\{x\}, \{\mathbf{y}\}) \text{ and } \gamma_i(t) = P(x_t = i \{\mathbf{y}\}).$	 Bugs once more: same trick except at each step kill all bugs but the one with the highest value at the node.



- A "profile HMM" or "string-edit" HMM is used for probabilistically matching an observed input string to a stored template pattern with possible insertions and deletions.
- Three kinds of states: match, insert, delete. m_n – use position n in the template to match an observed symbol i_n – insert extra symbol(s) observations after template position n d_n – delete (skip) template position n



- number of states = 3(length_template)
- Only insert and match states can generate output symbols.
- Once you visit or skip a match state you can never return to it.
- At most 3 destination states from any state, so S_{ij} very sparse.
- Storage/Time cost *linear* in #states, not quadratic.
- State variables and observations no longer in sync. (e.g. y1:m1 ; d2 ; y2:i2 ; y3:i2 ; y4:m3 ; ...)

Forward-Backward for Profile HMMs

5

- The equations for the delete states in profile HMMs need to be modified slightly, since they don't emit any symbols.
- For delete states k, the forward equations become:

$$\alpha_k(t) = \sum_j \alpha_j(t) S_{jk}$$

which should be evaluated after the insert and match state updates.

• For all states, the backward equations become:

$$\beta_k(t) = \sum_{i \in \text{match,ins}} S_{ki} \beta_i(t+1) A_i(\mathbf{y}_{t+1}) + \sum_{j \in \text{del}} S_{kj} \beta_j(t+1) A_j(\mathbf{y}_{t+1}) + \sum_{j \in \text{del}} S_{kj} \beta_j(t+1) A_i(\mathbf{y}_{t+1}) + \sum_{j \in \text{del}} S_{kj$$

which should be evaluated first for delete states k; then for the rest.

• The gamma equations remain the same:

$$\gamma_i(t) = p(x_t = i \mid \mathbf{y}_1^T) = \alpha_i(t)\beta_i(t)/L$$

• Notice that each summation above contains only three terms, regardless of the total number of states!

Initializing Forward-Backward for Profile HMMs $\,7$

- The initialization equations for Profile HMMs also need to be fixed up, to reflect the fact that the model can only begin in states m_1, i_1, d_1 and can only finish in states m_N, i_N, d_N .
- In particular, $\pi_j = 0$ if j is not one of m_1, i_1, d_1 .
- When initializing $\alpha_k(1)$, delete states k have zeros, and all other states have the product of the transition probabilities through only delete states up to them, plus the final emission probability.
- When initializing $\beta_k(T)$, similar adjustments must be made.
- To enforce the condition that the model finishes in states m_N, i_N, d_N , we create a special END state, accessible only from m_N, i_N, d_N , and append a special "END" symbol in the final position of each sequence. We then define A(END, k) to be zero unless k is the END state, in which case A(END, k) is one. [A(z, END) is also zero for any z other than the END symbol.]

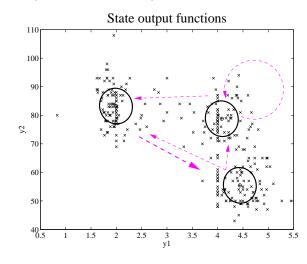
M-STEP FOR PROFILE HMMS

- 8
- The emission probabilities $A_j()$ for match and insert states and the initial state distribution π (for m_1, i_1, d_1) are updated exactly as in the regular M-step.
- \bullet The expected $\# {\rm transitions}$ from state i to j which begin at time t are different when j is a delete state:

$$\xi_{ij}(t) = \alpha_i(t) S_{ij} \beta_j(t) / L$$

• Given this change, the updates to the transition parameters is the same as in the normal M-step.

• Geyser data (continuous outputs)



<text>

Some HMM History

11

- Markov ('13) and later Shannon ('48,'51) studied *Markov chains*.
- Baum et. al (BP'66, BE'67, BS'68, BPSW'70, B'72) developed much of the theory of "probabilistic functions of Markov chains".
- Viterbi ('67) (now Qualcomm) came up with an efficient optimal decoder for state inference.
- Applications to speech were pioneered independently by:
 - -Baker ('75) at CMU (now Dragon)
 - Jelinek's group ('75) at IBM (now Hopkins)
 - communications research division of IDA (Ferguson '74 unpublished)
- Dempster, Laird & Rubin ('77) recognized a general form of the Baum-Welch algorithm and called it the *EM* algorithm.
- A landmark open symposium in Princeton ('80) hosted by IDA reviewed work till then.