CSC412 — Probabilistic Learning & Reasoning Sam Roweis

MARKOV MODELS 2

LECTURE 16:

MARKOV AND HIDDEN MARKOV MODELS

March 8, 2006

e Use past as state. Next output depends on previous output(s):

yt = flyt-1,¥t-2, -]
order is number of previous outputs

e Add noise to make the system probabilistic:
PYilyt—1,¥1-2, - Yi—)
e Markov models have two problems:

—need big order to remember past “events”
—output noise is confounded with state noise

PROBABILISTIC MODELS FOR TIME SERIES 1

e Generative models for time-series:
To get interesting variability need noise.
To get correlations across time, need some system state.

T noiseT
sources
internal
@ State Goutputs

e Time: discrete
States: discrete or continuous
Outputs: discrete or continuous

e Today: discrete state
similar to finite state automata; Moore/Mealy machines

LEARNING MARKOV MODELS 3

e The ML parameter estimates for a simple Markov model are easy:

T
pyLy2 - yr) =plyr-yi)] pyilyi-ryi2,- - yi—)
t=k+1
T
logp({y}) = logp(y1---y&) + Y logp(yelye—1,¥t-2,- -, yi—p)
t=k+1

e Each window of k& + 1 outputs is a training case for the model
PYHYt-1,¥t-2 -, Yi—k)-
e Example: for discrete outputs (symbols) and a 2nd-order markov
model we can use the multinomial model:
Py = m’yt—l =a,y1—2="0) = apqp
The maximum likelihood values for « are:

o numft stoyr=my1=a,y2 =
Xnab =

numlt s.t. g1 = a,yp—o = b

HIiDDEN MARKOV MoODELS (HMMs) 4

HMM GRAPHICAL MODEL 6

Add a latent (hidden) variable x; to improve the model.
e HMM = " probabilistic function of a Markov chain”:
1. 1st-order Markov chain generates hidden state sequence (path):
P = jlag=i) =5 Play=j)=m;
2. A set of output probability distributions A;(-) (one per state)
converts state path into sequence of observable symbols/vectors

Pyt = ylot =) = A;(y)

T

e Even though hidden state seq. is 1st-order Markov, the output
process is not Markov of any order [ex.
1111121111311121111131...]

state transition diagram)

e Hidden states {z:}, outputs {y}
Joint probability factorizes:

T
P({z},{y}) = I] P(@t|zs—1)P(yelze)

t=1
T—1 T
= Ty H Sap,aii H Agy(yt)
t=1 t=1

e NB: Data are not i.i.d.
There is no easy way to use plates to show this model. (Why?)

APPLICATIONS OF HMMSs 5

e Speech recognition.

e Language modeling.

e Information retrieval.

e Motion video analysis/tracking.

e Protein sequence and genetic sequence alignment and analysis.
e Financial time series prediction.

LINKS TO OTHER MODELS 7

e You can think of an HMM as:
A Markov chain with stochastic measurements.

o0 6 O

A mixture model with states coupled across time.

e The future is independent of the past given the present.
However, conditioning on all the observations couples hidden states.

PROBABILITY OF AN OBSERVED SEQUENCE 8

e To evaluate the probability P({y}), we want:
P({y}) = > P({z}, {y})
{z}
P(observed sequence) = > P(observed outputs, state path)

all paths

o Looks hard! (#paths = #states’). But joint probability factorizes:

Bucs oN A GRID 10

e Naive algorithm:

1. start bug in each state at t=1 holding value 0

2. move each bug forward in time: make copies & increment the
value of each copy by transition prob. + output emission prob.

3. go to 2 until all bugs have reached time T’
4. sum up values on all bugs

T
Py} =>_> > II Plztlwt—1)P(yeloe)
) T t=1 @
= > _P(x1)P(y1|z1) Y P(aalz1)P(y2la2) -+ Y Plar|or—1)P(yr|er) ® -
T 9 T [
e By moving the summations inside, we can save a lot of work.
time
THE FORWARD (<) RECURSION 9 BuGs ON A GRID - TRICK 11

e We want to compute:
L=P({y}) = X P({a}. {¥})
{z}

e There is a clever “forward recursion” to compute the sum efficiently.

aj(t)=P(yl, z1=7)

aj(l) =miA;(y1)

aplt+1) = {22 ()91 Ak(yer)
J

e Notation: 2% = {z4,..., 23} ¥2 = {ya,...,¥p}
e This enables us to easily (cheaply) compute the desired likelihood L
since we know we must end in some possible state:

L=>_ ay(T)
k

e Clever recursion:
adds a step between 2 and 3 above which says: at each node, replace
all the bugs with a single bug carrying the sum of their values

states

a —— time

e This trick is called dynamic programming, and can be used whenever
we have a summation, search, or maximization problem that can be
set up as a grid in this way. The axes of the grid don't have to be
“time” and “states”.

INFERENCE OF HIDDEN STATES 12

e What if we we want to estimate the hidden states given
observations? To start with, let us estimate a single hidden state:

FORWARD-BACKWARD ALGORITHM 14

e «;(t) gives total inflow of prob. to node (t,1)
B;(t) gives total outflow of prob.

p({y}Hzt)p(zt)
plat{y}) =v(x) =— 3~ —
r({y}) ,
_ Pyt ze)p(yis | ze)p(xe) g i
pyl) v
P4, 2)p(yf |oe)
T
p(Y1) -
(wl{y}) = o) = 20z1) § R
PRy y) =7\ 2t) = p(y7) e Bugs again: we just let the bugs run forward from time 0 to ¢ and
! backward from time T to ¢.
where a;(t) = p(Y1 ot =17) e In fact, we can just do one forward pass to compute all the «;(?)
p Yt+1 T =] and one backward pass to compute all the 5;(¢) and then compute
Bi(t) = p(yiy1 |) d one backward Il the B3;(t) and th
Yi(t) = plae =i | yi T any 7;(t) we want. Total cost is O(K>T).
FORWARD-BACKWARD ALGORITHM 13 LIKELIHOOD FROM FORWARD-BACKWARD ALGORITHM 15

e We compute these quantites efficiently using another recursion.
Use total prob. of all paths going through state i at time t to
compute the conditional prob. of being in state ¢ at time t:

ilt) = (Tf—Z\}q)
= a;(t)B;(t)/ L

where we defined:
T .
Bit) =p(yipi [z =17)
e There is also a simple recursion for (3;(t):

t) = Z S;iBi(t + 1) Ai(yt41)
Bi(T) = |

e «;(t) gives total inflow of prob. to node (¢,1)
B;(t) gives total outflow of prob.

o Since fov(xt) = 1, we can compute the likelihood at any time
using the results of the o — 3 recursions:

L=p{y}) = Zoz 1) B(x1)
e In the forward calculation we proposed originally, we did this at the
final timestep t = 1.
L= Z a(xp)
T

because 7 = 1.

Usiné HMMSs FOR RECOGNITION 16

e Use many HMMs for recognition by:

1. training one HMM for each class (requires labelled training data)
2. evaluating probability of an unknown sequence under each HMM
3. classifying unknown sequence: HMM with highest likelihood

| |

L1 L2 Lk
e This requires the solution of two problems:
1. Given model, evaluate prob. of a sequence.
(We can do this exactly & efficiently.)
2. Give some training sequences, estimate model parameters.

(We can find the local maximum of parameter space nearest our
starting point using Baum-Welch (EM).)

PROFILE (STRING-EDIT) HMMS 18

i =insert d = delete m = match (state transition diagram)

e A "profile HMM" or “string-edit” HMM is used for probabilistically
matching an observed input string to a stored template pattern
with possible insertions and deletions.

e Three kinds of states: match, insert, delete.
my, — use position n in the template to match an observed symbol
in — insert extra symbol(s) observations after template position n
dy, — delete (skip) template position n

VITERBI DECODING 17

e The numbers 7;(t) above gave the probability distribution over all
states at any time.

e By choosing the state ~y.(t) with the largest probability at each
time, we can make a “best” state path. This is the path with the
maximum expected number of correct states.

e But it is not the single path with the highest likelihood of
generating the data. In fact it may be a path of prob. zero!

e To find the single best path, we do Viterbi decoding which is just
Bellman’'s dynamic programming algorithm applied to this problem.

e The recursions look the same, except with max instead of 3.

e Bugs once more: same trick except at each step kill all bugs but
the one with the highest value at the node.

DP ror ProriLE HMMs 19

e How do we fill in

the costs for a DP eg: template length=4, test sequence length=>5

grid using a . . ° °
string-edit HMM? g . ° .
o Almost the same as E * * °
° ° o _
normal except: P -l e
— Now the grid is 3 é ° ° o B
times its normal o o . . §
height. LS. S U SN R -
— It is possible to 0 y ® ® * e -
5 . o .
move down Es % o . .
without moving 3 3 o o o .
right if you move yl y2 y3 y4 y5
into a deletion Test Sequence Position

state.

STRING-EDIT HMM GRID COSTS 20 ProriLE HMMS HAVE LINEAR COSTS
C,_ w=—1logT, .»—logA,(ys) if 2’ is match or insert *,
Cpp=—1ogT, if 2" is a delete state
° [) [] []

g [] o [])

® °) ° . .

E . . . o _

——————————————————————— B L

. [] L] (] o > =1 t d = ddete m = match (state transition diagram)
State T € {mn, in, dn} é ° ° ° ° ° % e
has nonzero transition 7 e 5 e number of states = 3(length template)
probabilities only to states = e/ e e e o 5 e Only insert and match states can generate output symbols.
m/ 6 {m Z d } " [] [] [] o o - L. i .
n+15tn, Ap4175- 2 o . . e Once you visit or skip a match state you can never return to it.
% % ° ° . e At most 3 destination states from any state, so S5;; very sparse.
) [] [] []
yI. y2 y3 y4 5 e Storage/Time cost linear in #states, not quadratic.
Test Positi . : :
Sequence Position e State variables and observations no longer in sync.
(e.g. yl:iml; d2;y2:i2; y3:i2 ; y4m3; ...)
FORWARD-BACKWARD FOR PROFILE HMMS 21 INITIALIZING FORWARD-BACKWARD FOR PROFILE HMMS 23

e The equations for the delete states in profile HMMs need to be
modified slightly, since they don't emit any symbols.

e For delete states k, the forward equations become:
t) = ZO‘j(t)Sjk
J

which should be evaluated after the insert and match state updates.

o For all states, the backward equations become:
Bpt) = > SkBit + DAi(yi1) + > Skibi(t)
t€match,ins j€del

which should be evaluated first for delete states k; then for the rest.
e The gamma equations remain the same:
Yit) = plzy =1i|y]) = a;(H)Bi(t) /L

o Notice that each summation above contains only three terms,
regardless of the number of states!

e The initialization equations for Profile HMMs also need to be fixed
up, to reflect the fact that the model can only begin in states
my,11,d; and can only finish in states m 7, 257, dp-

e In particular, = 0 if 7 is not one of mq,41,d;.

e When initializing cv.(1), delete states k have zeros, and all other
states have the product of the transition probabilities through only
delete states up to them, plus the final emission probability.

e When initializing 3;(T), the same kind of adjustment must be
made.

SoME HMM HISTORY 24

e Markov ('13) and later Shannon ('48,'51) studied Markov chains.

e Baum et. al (BP'66, BE'67, BS'68, BPSW'70, B'72) developed
much of the theory of “probabilistic functions of Markov chains”.

e Viterbi ('67) (now Qualcomm) came up with an efficient optimal
decoder for state inference.

e Applications to speech were pioneered independently by:
— Baker ('75) at CMU (now Dragon)
— Jelinek’s group ('75) at IBM (now Hopkins)

— communications research division of IDA (Ferguson '74
unpublished)

e Dempster, Laird & Rubin ('77) recognized a general form of the
Baum-Welch algorithm and called it the EM algorithm.

e A landmark open symposium in Princeton ('80) hosted by IDA
reviewed work till then.

