
CSC412 – Probabilistic Learning & Reasoning Sam Roweis

Lecture 16:

Markov and Hidden Markov Models

March 8, 2006

Probabilistic Models for Time Series 1

• Generative models for time-series:
To get interesting variability need noise.
To get correlations across time, need some system state.

internal
state outputs

noise
sources

• Time: discrete
States: discrete or continuous
Outputs: discrete or continuous

• Today: discrete state
similar to finite state automata; Moore/Mealy machines

Markov Models 2

• Use past as state. Next output depends on previous output(s):

yt = f [yt−1,yt−2, . . .]

order is number of previous outputs

PSfrag replacements

yt

yt−1 yt−2 yt−3 yt−4 yt−5 yt−k

• Add noise to make the system probabilistic:

p(yt|yt−1,yt−2, . . . ,yt−k)

• Markov models have two problems:

– need big order to remember past “events”

– output noise is confounded with state noise

Learning Markov Models 3

• The ML parameter estimates for a simple Markov model are easy:

p(y1,y2, . . . ,yT ) = p(y1 . . .yk)

T∏

t=k+1

p(yt|yt−1,yt−2, . . . ,yt−k)

log p({y}) = log p(y1 . . .yk) +

T∑

t=k+1

log p(yt|yt−1,yt−2, . . . ,yt−k)

• Each window of k + 1 outputs is a training case for the model
p(yt|yt−1,yt−2, . . . ,yt−k).

• Example: for discrete outputs (symbols) and a 2nd-order markov
model we can use the multinomial model:

p(yt = m|yt−1 = a, yt−2 = b) = αmab

The maximum likelihood values for α are:

α∗
mab =

num[t s.t. yt = m, yt−1 = a, yt−2 = b]

num[t s.t. yt−1 = a, yt−2 = b]



Hidden Markov Models (HMMs) 4

Add a latent (hidden) variable xt to improve the model.

• HMM ≡ “ probabilistic function of a Markov chain”:

1. 1st-order Markov chain generates hidden state sequence (path):

P(xt+1 = j|xt = i) = Sij P(x1 = j) = πj

2. A set of output probability distributions Aj(·) (one per state)
converts state path into sequence of observable symbols/vectors

P(yt = y|xt = j) = Aj(y)

(state transition diagram)

• Even though hidden state seq. is 1st-order Markov, the output
process is not Markov of any order [ex.
1111121111311121111131. . . ]

Applications of HMMs 5

• Speech recognition.

• Language modeling.

• Information retrieval.

• Motion video analysis/tracking.

• Protein sequence and genetic sequence alignment and analysis.

• Financial time series prediction.

• . . .

HMM Graphical Model 6

PSfrag replacements

x1

y1

x2

y2

x3

y3

xT

yT

• Hidden states {xt}, outputs {yt}
Joint probability factorizes:

P({x}, {y}) =
T∏

t=1

P(xt|xt−1)P(yt|xt)

= πx1

T−1∏

t=1

Sxt,xt+1

T∏

t=1

Axt(yt)

• NB: Data are not i.i.d.
There is no easy way to use plates to show this model. (Why?)

Links to Other Models 7

• You can think of an HMM as:
A Markov chain with stochastic measurements.

PSfrag replacements

x1

y1

x2

y2

x3

y3

xT

yT

or
A mixture model with states coupled across time.

PSfrag replacements

x1

y1

x2

y2

x3

y3

xT

yT

• The future is independent of the past given the present.
However, conditioning on all the observations couples hidden states.



Probability of an Observed Sequence 8

• To evaluate the probability P({y}), we want:

P({y}) =
∑

{x}

P({x}, {y})

P(observed sequence) =
∑

all paths

P( observed outputs , state path )

• Looks hard! ( #paths = #statesT ). But joint probability factorizes:

P({y}) =
∑

x1

∑

x2

· · ·
∑

xT

T∏

t=1

P(xt|xt−1)P(yt|xt)

=
∑

x1

P(x1)P(y1|x1)
∑

x2

P(x2|x1)P(y2|x2) · · ·
∑

xT

P(xT |xT−1)P(yT |xT )

• By moving the summations inside, we can save a lot of work.

The forward (α) recursion 9

• We want to compute:

L = P({y}) =
∑

{x}

P({x}, {y})

• There is a clever “forward recursion” to compute the sum efficiently.

αj(t) = P( y
t
1 , xt = j )

αj(1) = πjAj(y1)

αk(t + 1) = {
∑

j

αj(t)Sjk}Ak(yt+1)

• Notation: xb
a ≡ {xa, . . . , xb}; y

b
a ≡ {ya, . . . ,yb}

• This enables us to easily (cheaply) compute the desired likelihood L
since we know we must end in some possible state:

L =
∑

k

αk(T )

Bugs on a Grid 10

• Naive algorithm:

1. start bug in each state at t=1 holding value 0

2. move each bug forward in time: make copies & increment the
value of each copy by transition prob. + output emission prob.

3. go to 2 until all bugs have reached time T

4. sum up values on all bugs

st
at

es

time

Bugs on a Grid - Trick 11

• Clever recursion:
adds a step between 2 and 3 above which says: at each node, replace
all the bugs with a single bug carrying the sum of their values

st
at

es
timeα

• This trick is called dynamic programming, and can be used whenever
we have a summation, search, or maximization problem that can be
set up as a grid in this way. The axes of the grid don’t have to be
“time” and “states”.



Inference of Hidden States 12

• What if we we want to estimate the hidden states given
observations? To start with, let us estimate a single hidden state:

p(xt|{y}) = γ(xt) =
p({y}|xt)p(xt)

p({y})

=
p(yt

1|xt)p(yT
t+1|xt)p(xt)

p(yT
1 )

=
p(yt

1, xt)p(yT
t+1|xt)

p(yT
1 )

p(xt|{y}) = γ(xt) =
α(xt)β(xt)

p(yT
1 )

where αj(t) = p( y
t
1 , xt = j )

βj(t) = p(yT
t+1 | xt = j )

γi(t) = p(xt = i | yT
1 )

Forward-Backward Algorithm 13

• We compute these quantites efficiently using another recursion.
Use total prob. of all paths going through state i at time t to
compute the conditional prob. of being in state i at time t:

γi(t) = p(xt = i | yT
1 )

= αi(t)βi(t)/L

where we defined:

βj(t) = p(yT
t+1 | xt = j )

• There is also a simple recursion for βj(t):

βj(t) =
∑

i

Sjiβi(t + 1)Ai(yt+1)

βj(T ) = 1

• αi(t) gives total inflow of prob. to node (t, i)
βi(t) gives total outflow of prob.

Forward-Backward Algorithm 14

• αi(t) gives total inflow of prob. to node (t, i)
βi(t) gives total outflow of prob.

st
at

es

timeα β

• Bugs again: we just let the bugs run forward from time 0 to t and
backward from time T to t.

• In fact, we can just do one forward pass to compute all the αi(t)
and one backward pass to compute all the βi(t) and then compute
any γi(t) we want. Total cost is O(K2T ).

Likelihood from Forward-Backward Algorithm 15

• Since
∑

xt
γ(xt) = 1, we can compute the likelihood at any time

using the results of the α − β recursions:

L = p({y}) =
∑

xt

α(xt)β(xt)

• In the forward calculation we proposed originally, we did this at the
final timestep t = T :

L =
∑

xT

α(xT )

because βT = 1.



Using HMMs for Recognition 16

• Use many HMMs for recognition by:

1. training one HMM for each class (requires labelled training data)

2. evaluating probability of an unknown sequence under each HMM

3. classifying unknown sequence: HMM with highest likelihood

L1 L2 Lk

• This requires the solution of two problems:

1. Given model, evaluate prob. of a sequence.
(We can do this exactly & efficiently.)

2. Give some training sequences, estimate model parameters.
(We can find the local maximum of parameter space nearest our
starting point using Baum-Welch (EM).)

Viterbi Decoding 17

• The numbers γj(t) above gave the probability distribution over all
states at any time.

• By choosing the state γ∗(t) with the largest probability at each
time, we can make a “best” state path. This is the path with the
maximum expected number of correct states.

• But it is not the single path with the highest likelihood of
generating the data. In fact it may be a path of prob. zero!

• To find the single best path, we do Viterbi decoding which is just
Bellman’s dynamic programming algorithm applied to this problem.

• The recursions look the same, except with max instead of
∑

.

• Bugs once more: same trick except at each step kill all bugs but
the one with the highest value at the node.

Profile (String-Edit) HMMs 18

i = insert d = delete m = match

m1 m2 m3 mT

iT

dTd3

i3i2

d2d1

i1

(state transition diagram)

• A “profile HMM” or “string-edit” HMM is used for probabilistically
matching an observed input string to a stored template pattern
with possible insertions and deletions.

• Three kinds of states: match, insert, delete.
mn – use position n in the template to match an observed symbol
in – insert extra symbol(s) observations after template position n
dn – delete (skip) template position n

DP for Profile HMMs 19

• How do we fill in
the costs for a DP
grid using a
string-edit HMM?

• Almost the same as
normal except:

– Now the grid is 3
times its normal
height.

– It is possible to
move down
without moving
right if you move
into a deletion
state.

eg: template length=4, test sequence length=5

in
se

rt
io

ns
de

le
tio

ns
m

at
ch

es
Test Sequence Position
y1 y2 y3 y4

(e
m

it 
on

 a
rr

iv
al

)

y5



String-Edit HMM Grid Costs 20

Cx → x′ = − log Tx,x′ − log Ax′(yt) if x′ is match or insert

Cx → x′ = − log Tx,x′ if x′ is a delete state

State x ∈ {mn, in, dn}
has nonzero transition
probabilities only to states
x′ ∈ {mn+1, in, dn+1}.

in
se

rt
io

ns
de

le
tio

ns
m

at
ch

es

Test Sequence Position
y1 y2 y3 y4

(e
m

it 
on

 a
rr

iv
al

)

y5

Forward-Backward for Profile HMMs 21

• The equations for the delete states in profile HMMs need to be
modified slightly, since they don’t emit any symbols.

• For delete states k, the forward equations become:

αk(t) =
∑

j

αj(t)Sjk

which should be evaluated after the insert and match state updates.

• For all states, the backward equations become:

βk(t) =
∑

i∈match,ins

Skiβi(t + 1)Ai(yt+1) +
∑

j∈del

Skjβj(t)

which should be evaluated first for delete states k; then for the rest.

• The gamma equations remain the same:

γi(t) = p(xt = i | yT
1 ) = αi(t)βi(t)/L

• Notice that each summation above contains only three terms,
regardless of the number of states!

Profile HMMs have Linear Costs 22

i = insert d = delete m = match

m1 m2 m3 mT

iT

dTd3

i3i2

d2d1

i1

(state transition diagram)

• number of states = 3(length template)

• Only insert and match states can generate output symbols.

• Once you visit or skip a match state you can never return to it.

• At most 3 destination states from any state, so Sij very sparse.

• Storage/Time cost linear in #states, not quadratic.

• State variables and observations no longer in sync.
(e.g. y1:m1 ; d2 ; y2:i2 ; y3:i2 ; y4:m3 ; . . .)

Initializing Forward-Backward for Profile HMMs 23

• The initialization equations for Profile HMMs also need to be fixed
up, to reflect the fact that the model can only begin in states
m1, i1, d1 and can only finish in states mN , iN , dN .

• In particular, πj = 0 if j is not one of m1, i1, d1.

• When initializing αk(1), delete states k have zeros, and all other
states have the product of the transition probabilities through only
delete states up to them, plus the final emission probability.

• When initializing βk(T ), the same kind of adjustment must be
made.



Some HMM History 24

• Markov (’13) and later Shannon (’48,’51) studied Markov chains.

• Baum et. al (BP’66, BE’67, BS’68, BPSW’70, B’72) developed
much of the theory of “probabilistic functions of Markov chains”.

• Viterbi (’67) (now Qualcomm) came up with an efficient optimal
decoder for state inference.

• Applications to speech were pioneered independently by:

– Baker (’75) at CMU (now Dragon)

– Jelinek’s group (’75) at IBM (now Hopkins)

– communications research division of IDA (Ferguson ’74
unpublished)

• Dempster, Laird & Rubin (’77) recognized a general form of the
Baum-Welch algorithm and called it the EM algorithm.

• A landmark open symposium in Princeton (’80) hosted by IDA
reviewed work till then.


