CSC412 — Probabilistic Learning & Reasoning Sam Roweis

LECTURE 15:

BELIEF PROPAGATION ON TREES

March 6, 2006

EFFICIENTLY ANSWERING MULTIPLE QUERIES 2

e The ELIMINATION algorithm we described was query based: given
the single node marginal to compute (the last item in the ordering),
it efficiently summed out (or conditioned on) all other variables.

e But what if we want to do multiple inferences?
For example, during learning, constraint satisfaction, planning.

e We could run ELIMINATION once for each marginal, but this
would be extremely inefficient since most of the calculations would
be duplicated.

e We want an algorithm that reuses work efficiently to compute all
marginals (or pairwise marginals) given evidence

e This needs:

1) A plan for which intermediate factors to compute in what order.
2) Some storage for these intermediate factors.

REMINDER: ELIMINATION FOR INFERENCE 1

e We want to be able to condition on some “evidence” xp (observed
nodes) and compute the posterior probabilities of some “query”
nodes X o while marginalizing out “nuisance” nodes xp.

e For a single node posterior (i.e. xp is a single node), there was an
efficient way to avoid exponential work by “pushing the summations
inside”. We formalized this trick as a node elimination algorithm.

e But it required a node ordering to be given, which told it which
order to do the summations in, and finding an optimal ordering is
hard (equivalent to finding a triangulation with small cliques).

Xy Xs X Xa
Xz Xz Xz Xz Xz
X I X Xs X X X
X
X X: X s s X X X
@ ® © @ © 0 0

TREE-STRUCTURED GRAPHICAL MODELS 3

e For now, we will focus on tree-structured graphical models.

e Chains are an important subclass of trees: e.g. Hidden Markov
Models and continuous State Space Models are also trees.

e Exact inference on trees is the basis for the junction tree algorithm
which solves the general exact inference problem for all directed
acyclic graphs and for many approximate algorithms which can
work on intractable or cyclic graphs.

e Directed and undirected trees make exactly same conditional
independence assumptions, so we cover them together.

Cﬁﬂ %P

(@) (b) (©

ELIMINATION ON TREES 4

ELIMINATE = MESSAGE PASSING 6

e Recall basic structure of ELIMINATE:

1. Convert directed graph to undirected by moralization. (Easy)
2. Chose elimination ordering with query node last. (Hard)
3. Place all potentials on active list.

4. Eliminate nodes by removing all relevant potentials, taking
product, summing out node and placing resulting factor back
onto potential list.

e What happens when the original graph is a tree?

1. No moralization is necessary.

2. There is a natural elimination ordering with query node as root.
(Any depth first search order.)

3. All subtrees with no evidence nodes can be ignored (since they
will leave a potential of unity once they are eliminated).

e On a tree, ELIMINATE can be thought of as passing messages up
to the query node at the root from the other nodes at the leaves or
interior. Since we ignore subtrees with no evidence, observed
(evidence) nodes are always at the leaves.

e The message m ;(x;) is created when we sum over z;

E
myi(ai) = > P @) [T mu(a;)
Ty kec(y)
e At the final node Ty, we obtain the answer:
_ E
plrslxp) oc P (ap) T musy)
kec(f)
e If j is an evidence node, wE(:cj) = 0(rj, 7)), else wE(xj) =1
e If j is a leaf node in the ordering, c(j) is empty, otherwise c(j) are
the children of j in the ordering.

ELIMINATION ON TREES 5

MESSAGES ARE REUSED IN MULTIELIMINATION 7

o Now consider eliminating node 7 which is followed by 7 in the order.

e Which nodes appear in the potential created after summing over 57
— nothing in the subtree below j (already eliminated)
— nothing from other subtrees, since the graph is a tree
—only 7, from 1;; which relates i and j

e Call the factor that is created m j;(z;),
and think of it as a message that
J passes to ¢ when j is eliminated.

e This message is created by
summing over j the product of
all earlier messages my,;(z;)
sent to j as well as ¢(z;, 7;)
and (if j is an evidence node)

OF ().

e Consider querying 1, x9, 3 and x4 in the graph below.
e The messages needed for x1, x9, x4 individually are shown (a-c).

e Also shown in (d) is the set of messages needed to compute all
possible marginals over single query nodes.

~ ~ (

X) X) X

] mys (%) M) |
)% (% (1% %
M) N () me(x) N e (6) me(x) N ™, Z \'\m"(x‘)
Mas (%) My () Mpy(x)
2 (S Ox

e ™ X x () U Xa x () e %

(@ (b) © O}

)X

Mz (%) L’ my00) || ma ()

e Key insight: even though the naive approach (rerun Elimination)
needs to compute N2 messages to find marginals for all N query
nodes, there are only 2N possible unique messages.

e We can compute all possible messages in only double the amount
of work it takes to do a single query.

e Then we take the product of relevant messages to get marginals.

COMPUTING ALL POSSIBLE MESSAGES 8

e Once we have the messages, we can compute marginals using:
- E
plailxp) oc P () T mgilas)
kec(i)
e How can we compute all possible messages efficiently?

e left CHOOSEROOT unspecified. A

es messages to flow inward from the leaves to the root. A subsequent call to

DISTRIBUTE causes messages to flow outward from the root to the leaves. After these calls have

o

=

=
e |dea: respect the following MESSAGE-PASSING-PROTOCOL: $E50%
~ c£g=2
A node can send a message to a neighbour only when it has 5 ETEfy
. . . = S g E
received messages from all its other neighbours. B EciTs
. . . o = E25 22
e Protocol is realizable: designate one node (arbitrarily) as the root. E 7 EE2
Collect messages inward to root then distribute back out to leaves. s =2 Tz e
= N 2 = 28 £
. . . —~ . Z & . =S o 23 ‘5o
e Remember that the directed tree on which we pass messages might S T e o= . - =% 3 ,_\és E<E7E
. . s g 3 £ £ =3 2 % & <=k3z gxm z
not be same directed tree we started with. iaé > E oz = s .2F TLE ALEJ g% EFEZE
. “ ” 0" 1 VE/(ES&SE E = = 3%2 /;:232 E: s E\i E%C _éﬂ
e We can also consider “synchronous” or “asynchronous” message % $E=i=iaf gufel 3z =2 Eié 52 g% ZEg8E4
. , gC 0 AL EYSYs T.0 £ .8 g & il 83282
passing nodes that respect the protocol but don't use the EEl: 5 5 ‘x5 B : EEL 2 z : g £28E<
i i i . 2 « w « e L1 = 5« 0 : 0 a & g:: ° E’
Collect-Distribute schedule above. (Must prove this terminates.) g z g 2 2 g <572

BELIEF PROPAGATION (SUM-PRODUCT) ALGORITHM 9 COMPUTING JOINT PAIRWISE POSTERIORS 11

e Choose a root node (arbitrarily or as first query node).
e If j is an evidence node, wE(a;'j) =0(zj,7;), else wE(acj) =1.

e Pass messages from leaves up to root and then back down using:

mii(a;) =Y E (@) (x;, ;) IT mui(a;)
j kec(j)
e Given messages, compute marginals using:
plailxp) ocvPlai) [T mpie)

kec(i)

— o~
U/

SN

e We can also easily compute the joint pairwise posterior distribution
for any pair of connected nodes z;, z;.

e To do this, we simply take the product of all messages coming into
node i (except the message from node j), all the messages coming
into node j (except the message from node i) and the potentials

Vi), (), Yij(g,).
e The posterior is proportional to this product:
S E E
plri, x| p) oc P (@) (@) (e,) [T muilz) T mejla))
k#jecti) l#iec(j)
e These joint pairwise posteriors cover all the maximal cliques in the
tree, and so those are all we need to do learning.

e Inference of other pairwise or higher order joint posteriors is
possible, but more difficult.

MAXIMIZING INSTEAD OF SUMMING 12

e ELIMINATION and BELIEF PROPAGATION both summed over
all possible values of the marginal (non-query, non-evidence) nodes
to get a marginal probability.

e What if we wanted to maximize over the non-query, non-evidence

nodes to find the probabilty of the single best setting consistent
with any query and evidence?

max p(x) = max max max max max p(x;)p(Xa|x1)p(xs|x1)p(xa|x2) p(x5]x3)p(x6| X2, X5)
x X1 X2 X3 X1 X

= n;axp(m) n}ﬁtxp(xﬂx.) n}(axp(xs\x.) n}(axp(x;\)q) n;e}xp(x,;\x@p(xdx-z., X5)
e This is known as the maximum a-posteriori or MAP configuration.

e It turns out that (on trees), we can use an algorithm exactly like
belief-propagation to solve this problem.

MaAx-ProDUCT ALGORITHM

14

e Choose a root node arbitrarily.

e If j is an evidence node, @DE(x]) =0(zj,7;), else wE(:L’]) =1

e Pass messages from leaves up to root using:

E
() = max | 6P ()olesxy)] mpy
j .
kec(j)
e Remember which choice of z; = x;" yielded maximum.

e Given messages, compute max value using any node i:

E o E¢.. A
max p (x|E) = HEX v () H M (T
kec(i)

e Retrace steps from root back to leaves recalling best x
maximizing argument (configuration) x*.

()

)

*

j to get the

SuM-ProbpucCcT, MAX-PRODUCT AND SEMIRINGS 13

e Why can we use the same trick for MAP as for marginals?
e Because multiplication distributes over max as well as sum:
max(ab, ac) = a max(b, c)

e Formally, both the “sum-product” and “max-product” pair are
commutative semirings.

e It turns out that the “max-sum” pair is also a semiring:

max(a + b,a + ¢) = a + max(b, c)

which means we can do MAP computations in the log domain:

max p(x) = max Hp(xz'lwm) = maxlog p(x) = max Z log p(zi|r;)

7 (2

