
CSC412 – Probabilistic Learning & Reasoning Sam Roweis

Lecture 12:

Bayesian Parameter Estimation

February 27, 2006

Probability vs. Statistics 1

• Probability: inferring probabilistic quantities from partial data given
fixed models (e.g. marginals, conditionals, log likelihood).

• Statistics: inferring a model given fixed data observations
(e.g. clustering, classification, regression).

•Many approaches to statistics.
We have focused on (regularized) maximum likelihood.
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Bayesian Approach 2

• The Bayesian programme (after Rev. Thomas Bayes) treats all

unknown quantities as random variables and represents uncertainty
over those quantities using probability distributions.

• Thus, unknown parameters are treated as random variables just like
latent (hidden) variables or missing data.
This means we have probability distributions over the parameters.

•We can (and should) put priors p(θ) over them, and can compute
things like posteriors p(θ|D).

• Crucially, we want to integrate/sum out all unobserved quantities
(even parameters) just as we did with things like cluster assignment
variables or continuous latent factors.

Plates 3

• Since Bayesian methods treat parameters as random variables, we
would like to include them into the graphical model.

•One way to do this is to repeat all the iid observations explicitly
and show the parameter only once.

• A better way is to use “plates”, in which repeated quantities that
are iid are put in a box.
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Plates are Macros for Repeated Structure 4

• Plates are like “macros” that allow you to draw a very complicated
graphical model with a simpler notation.

• The rules of plates are simple: repeat every structure in a box a
number of times given by the integer in the corner of the box
(e.g. N), updating the plate index variable (e.g. n) as you go.

•Duplicate every arrow going into the plate and every arrow leaving
the plate by connecting the arrows to each copy of the structure.

1X 2X 3X NX

µ

N

µ

nX

(a) (b)

Nested/Intersecting Plates 5

• Plates can be nested, in which
case there arrows get duplicated
also, according to the rule: draw
an arrow from every copy of the
source node to every copy of the
destination node.

• Plates can also cross (intersect),
in which case the nodes at the
intersection have multiple indices
and get duplicated a number of
times equal to the product of the
duplication numbers on all the
plates containing them.
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Posterior Over Parameters 6

• If θ is a random variable, we can view the likelihood as a
conditional probability and use Bayes rule:

p(θ|D) =
p(D|θ)p(θ)

p(D)

• This crucial equation can be written in words:

posterior ∝ likelihood × prior

• Computing the posterior requires conditioning on the data and
having a prior over parameters.

• In contrast, frequentists consider various “estimators” of θ and
hope to show that they have desirable properties, e.g. ML,
“unbiased”, “minimum variance”, etc.

Model Averaging 7

• Posterior p(θ|D) is used in all future Bayesian computations.

• For example, to do prediction of a new value xnew given some iid
data, we compute the conditional posterior:

p(xnew|X) =

∫

p(xnew, θ|X)dθ

=

∫

p(xnew|θ,X)p(θ|X)dθ

=

∫

p(xnew|θ)p(θ|X)dθ
X

θ

Xnew

• This means the Bayesian prediction is based on averaging
predictions from lots of models, weighted by the posterior
probability of the model’s parameters.



Multiple Model Averaging 8

• Imagine that we wanted to compute the probability of some new
data (e.g. the density of a new point) taking into account the
predictions of all models. We can compute:

p(xnew|X) =

∫ ∫

p(xnew, θ,m|X)dθdm

=

∫ ∫

p(xnew|θ,m,X)p(θ,m|X)dθdm

=

∫ ∫

p(xnew|θ,m,X)p(θ|m,X)p(m|X)dθdm

• This requires two posteriors, p(m|X) (see later) and p(θ|x,m).

• Remember: maximum likelihood alone cannot be used to do either
model selection or model averaging since it always is subject to
overfitting. Bayesian methods in principle can never overfit, since
we integrate over all unknown quantities.

ML vs. Maximum-A-Posteriori (MAP) 9

• If we forced a Bayesian to pick a single value for the parameters
rather use the entire posterior p(θ|D), what would they do?

• Bayes point (mean of posterior):

θBayes =

∫

θp(θ|D)dθ

•MAP (mode of posterior):

θMAP = argmaxθ p(θ|D)

= argmaxθ log p(D|θ) + log p(θ)

• The maximum a-posteriori (MAP) estimate looks exactly
maxmimum likelihood except for an extra term which depends only
on the parameters.

• This is often called “penalized maximum likelihood”, and it’s what
we’ve been studying in this course so far.

Integrate or Optimize? 10
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• Normally, Bayesian statistics needs to perform an integral in order
to do predictions.
Frequentist statistics uses a “plug-in” estimator such as ML.

•We can be “pseudo-Bayesian” by using single estimators such as
Bayes-point or MAP.

• Notice that both the Bayesian approach and the ML (frequentist)
approach need to calculate the likelihood function p(x|θ), which is
what the graphical model specifies.

• So all the work we have done so far to is applicable to both
Bayesian and ML frameworks.

Example: Scalar Gaussian Model 11

• Consider a univariate Gaussian, with fixed, known variance σ2.

•We want to put a prior p(µ) on the mean, µ and then compute its
posterior, p(µ|X) using the Gaussian likelihood p(X|µ).

•What should the prior be? Try another Gaussian:

p(µ) =
1

2πτ2
exp

{

−
1

2τ2
(µ − µ0)

2
}

= N (µ|µ0, τ )

• Now the joint probability can be written as:

p(X, µ) = p(X|µ)p(µ)

=
1

2πσ2
exp







−
1

2σ2

N
∑

n=1

(xn − µ)2







1

2πτ2
exp

{

−
1

2τ2
(µ − µ0)

2
}

•We need to marginalize this joint with respect to µ to obtain the
posterior p(µ|X). This normalization can be done using the
conditional Gaussian formulas or by explicitly completing the square.



Scalar Gaussian: Posterior over the Mean 12

• Amazingly, the posterior is another Gaussian:

p(µ|X) =
p(X|µ)p(µ)
∫

p(X, µ)dµ

=
1

2πs2
exp

{

−
1

2s2
(µ − m)2

}

= N (µ|m, s2)

m =
N/σ2

N/σ2 + 1/τ2
µML +

1/τ2

N/σ2 + 1/τ2
µ0

s2 =

(

N

σ2
+

1

τ2

)−1

where µML is the sample mean.

Conjugate Priors 13

• In the example we just worked out, the posterior had the same form
as the prior (both were Gaussian).

•When this happens, the prior is called the conjugate prior for the
parameters with respect to the likelihood function.

• Conjugate priors are very nice to work with because the posterior
and prior have the same parameter types and the effect of the data
is just to update the parameters from the prior to the posterior.

• In these settings, the prior can often be interpreted as some
“pseudo-data” which we observed before we saw the real data.

• Remember Laplace smoothing? That’s just a pseudo-count of
unity, which in turn is just a conjugate prior for the multinomial...

Example: Multinomial 14

• Bayesian methods can also be used to estimate the density of
discrete quantities (e.g. spam/nospam, shoe colour).

• If we use a multinomial distribution over K settings as the
likelihood model, the conjugate prior is called the Dirichlet

distribution defined as:

p(θ) = C(α)θ
α1−1
1 θ

α2−1
2 . . . θ

αK−1
K

C(α) = Γ(
∑

k

αk)/
∏

k

Γ(αk)

where Γ(·) is the gamma function and the α − 1 is a convention.

• This is a funny density, because it is a density over the simplex, i.e.
over vectors whose components are non-negative and sum to one.

• In the binary case, the multinomial becomes a binomial

p(x|θ) = θx(1 − θ)1−x and the Dirichlet becomes a beta

distribution p(θ) = C(α)θα1−1(1 − θ)α2−1.

Multinomial Posterior 15

• The posterior is also of the form of a Dirichlet:

p(θ|X) ∝ p(X|θ)p(θ) =
∏

k

θ
∑

n[xn=k]
k θ

αk−1
k

=
∏

k

θ
αk−1+

∑

n[xn=k]
k

which has parameters α′
k = αk +

∑

n[xn = k].

•We see that to update the prior into a posterior, we simply add the
observed counts to the priors.

• So we can think of the priors as “pseudo-counts”.



Heirarchical Bayes and Structure Learning 16

•What about the parameters of the parameter priors?
In a full Bayesian formulation, they also have priors, called
hyperpriors and we treat them in the same way.

• In theory we should do this upwards forever, but in practice we
usually stop after only one or two levels.
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•What about the model structure?
In a full Bayesian formulation we also have a prior on that, and
attempt to get a posterior. Sometimes this can be done (e.g. fully
observed tree learning was just maximum likelihood over structure).

Model Selection 17

• In principle we could do model structure learning in a Bayesian way
also. Consider a fixed class of models, indexed by m = 1 . . . M
(e.g. Gaussian mixtures with m components).

• Since m is unknown, the Bayesian way is to treat it as a random
variable and to compute its posterior:

p(m|X) =
p(X|m)p(m)

p(X)

• Notice that we require a prior p(m) on models as well as the
marginal likelihood:

p(X|m) =

∫

p(X, θ|m)dθ =

∫

p(X|θ,m)p(θ|m)dθ

•We could try to compute the model with the highest posterior,
in which case we don’t have to compute p(X).

•Or else we could use all of the models, weighted by their posteriors

to do predictions at test time. This was called “model averaging”.

Practical Bayesian and Other Methods 18

•Often the integrals required by correct Bayesian reasoning are
computationally intractable, and so we resort to approximations,
such as sampling, variational methods, large sample approximations
(BIC,AIC,MDL), tree-structured bounds, etc.

• There are also many non-Bayesian methods for model selection and
capacity control, such as kernel machines, locally weighted
modeling and a very popular and powerful class of algorithms
known (oddly) as non-parametric or semiparametric approaches to
solving estimation problems.

• For these adventures, see courses by Prof. Neal and Prof. Boutilier.


