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1 Introduction

This paper provides a tutorial introduction to factor graphs and the sum-product al-
gorithm, a simple way to understand, in a single setting, a large number of seemingly
different algorithms that have been developed in computer science and engineering. We
consider, in particular, algorithms that must deal with complicated “global” functions
of many variables and which derive their computational efficiency by exploiting the way
in which the global function factors into a product of simpler “local” functions. Such a
factorization can be visualized using a factor graph, a bipartite graph that express which
variables are arguments of which local functions.

The aim of this tutorial is to introduce factor graphs and to describe a generic
message-passing algorithm called the sum-product algorithm, that operates in a factor
graph and attempts to compute various marginal functions associated with the global
function. The basic ideas are very simple; yet, as we will show, a surprisingly wide variety
of algorithms developed in the the artificial intelligence, signal processing, and digital
communications communities can be derived as specific instances of the sum-product
algorithm, operating in an appropriately chosen factor graph.

Genealogically, factor graphs are a straightforward generalization of certain graph-
theoretic descriptions for error-correcting codes; in particular, the TWL graphs of [42, 43],
which in turn are descendants of the Tanner graphs of [39]. Tanner introduced a bipartite
graph framework to describe families of codes that are generalizations of the low-density
parity-check codes of Gallager [15], and also described the sum-product algorithm in
this setting. In Tanner’s original formulation, all variables are codeword symbols and
hence “visible,” i.e., there are no hidden (latent) state variables. Later, and essentially
independently of Tanner’s work, Wiberg, Loeliger and Koetter broadened this bipartite
graph framework by allowing hidden variables [42, 43]. Factor graphs take these graph-
theoretic models one step further, by applying them to functions. From the factor graph
perspective (as we will describe in Section 3.1), a Tanner graph (and by extension a TWL
graph) for a code represents a particular factorization of the characteristic function of the
code.

While it may seem intuitively reasonable that some algorithms should exploit the
manner in which a global function factors into a product of local functions, the funda-
mental insight that many well-known algorithms essentially solve the “MPF” (marginalize
product-of-functions) problem, each in their own particular setting, was first made explicit
in the work of Aji and McEliece [1]. In a significant paper [2], Aji and McEliece develop
the “generalized distributive law” (GDL) that in some cases solves the MPF problem us-
ing a “junction tree” representation of the global function. Factor graphs can be viewed
as an alternative approach with closer ties to Tanner graphs and previously developed
graphical representations for codes. Essentially every result developed in the junction
tree/GDL setting can be translated into an equivalent result in the factor graph/sum-



product algorithm setting, and vice versa. We prefer the latter setting not only because it
is better connected with previous approaches, but also because we feel that factor graphs
are in some ways easier to describe, giving them a modest pedagogical advantage.

There are also close connections between factor graphs and graphical representations
(graphical models) for multidimensional probability distributions such as Markov ran-
dom fields [21, 23, 35] and Bayesian (belief) networks [34, 22]. Like factor graphs, these
graphical models encode in their structure a particular factorization of the joint proba-
bility mass function of several random variables. Pearl’s powerful “belief propagation”
algorithm [34] that operates by “message-passing” in a Bayesian network translates im-
mediately into an instance of the sum-product algorithm operating in a factor graph that
expresses the same factorization. Bayesian networks and belief propagation have been
used previously to explain the iterative decoding of turbo codes and low-density parity
check codes [12, 24, 27, 28, 33], the most powerful practically-decodable codes known, and
hence these algorithms, too, can be viewed as instances of the sum-product algorithm.

We begin the paper in Section 2 with a small worked example that illustrates the
operation of the sum-product algorithm in a simple factor graph. We will see that when
a factor graph is cycle-free, then the structure of the factor graph not only encodes the
way in which a given function factors, but this structure also encodes expressions for
computing the various marginal functions associated with the given function, and these
expressions lead directly to the sum-product algorithm.

In section 3, we show how factor graphs can be used as a system and signal modeling
tool. We see that factor graphs are compatible both with “behavioral” and “probabilis-
tic” modeling styles. Connections between factor graphs and other graphical models are
explored in Appendix B, where we recover Pearl’s belief propagation algorithm as an
instance of the sum-product algorithm.

In Section 4, we apply the sum-product algorithm to trellis-structured models, and
obtain the forward/backward algorithm, the Viterbi algorithm, and the Kalman filter as
instances of the sum-product algorithm. In Section 5, we apply the sum-product algorithm
to factor graphs with cycles, and obtain the iterative algorithms used to decode turbo-like
codes as instances of the sum-product algorithm.

In Section 6, we describe several generic transformations by which a factor graph
with cycles might be converted—often at great expense in complexity—to an equivalent
cycle-free form. In Appendix C, we apply these ideas to the factor graph representing
the DFT kernel, and derive a Fast Fourier Transform algorithm as an instance of the
sum-product algorithm.

Some concluding remarks are given in Section 7.



2 Marginal Functions, Factor Graphs, and the Sum-
Product Algorithm

Throughout this paper we deal with functions of many variables. Let z;, zo, ..., , be
a collection of variables, in which, for each ¢, x; takes on values in some (usually finite)
domain A;. Let g(xy,...,z,) be an R-valued function of these variables, i.e., a function

with domain

and codomain R. The domain S of g is called the configuration space for the given
collection of variables, and each element of S is a particular configuration of the variables,
i.e., an assignment of a value to each variable. The codomain R of g can in general be any
semiring [2]; however, at least initially, we will lose nothing essential by assuming that R
is the real numbers.

Assuming that summation of values in R is well defined, then associated with every
function g(z1, ... ,z,) are n marginal functions g;(z;). For each a € A;, the value of g;(a)
is obtained by summing the value of g(z1,... ,z,) over all configurations of the variables
that have z; = a.

This type of sum is so central to this paper that we introduce a slightly eccentric
summation notation to handle it. Instead of indicating the variables being summed over,
in a “not-sum” or summary, we indicate those variables not being summed over. For
example, if h is a function of three variables =, x5, and z3, then the “summary for z5” is
denoted

Z h(z1, o, x3) := Z Z h(zy,za, x3).

~{z2} z1€A; T3€A;3

In this notation we have

gi(z;) == Z 9(z1, ... ,zn),

~{zi}
i.e., the ith marginal function associated with g(z1,... ,z,) is the summary for z; of g.

We are interested in developing efficient procedures for computing marginal functions
that (a) exploit the way in which the global function factors, using the distributive law
to simplify the summations, and (b) re-uses intermediate values, i.e., partial sums, that
arise. As we will see, such procedures can be expressed very naturally using a factor
graph.



Suppose that g(z1, ... ,,) factors factors as a product of several local functions, each

having some subset of {z1,...,z,} as arguments, i.e., suppose
9(z1,..yza) = [] £x(X) (1)
XeQ
where @ is a collection of subsets of {z1,...,z,} and fx(X) is a function having the

elements of X as arguments.

Definition: A factor graph is a bipartite graph that expresses the structure of the fac-
torization (1). A factor graph has a variable node for each variable z;, a factor node for
each local function fx, and an edge connecting variable node z; to factor node fx if and
only if z; is an argument of f, i.e., z; € X.

Effectively, a factor graph is a standard bipartite graphical representation of a math-
ematical relation; in this case, the “is an argument of” relation between variables and

local functions.
@) @) @) @) @)
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Figure 1: A factor graph for the product fa(z1)fp(x2) fo(z1, 22, 23) fp (23, 24) fE(23, 25).

» Example 1. (A simple factor graph)
Let g(z1, 22, 23, T4, T5) be a function of five variables, and suppose that g can be expressed
as a product

9(z1, T2, T3, T4, T5) = fa(@1) fB(22) fo (1, T2, 73) fO (T3, T4) fE (T3, T5) (2)

of five factors. The factor graph that corresponds to (2) is shown in Fig. 1. <

2.1 Expression Trees

In many situations (for example when g(xy,... ,z5) represents a joint probability mass
function, we are interested in computing the marginal functions g;(z;). We can obtain an
expression for each marginal function by using (2) and exploiting the distributive law.

To illustrate, we can write g;(z1) as

g1(z1) = fa(z1) (ZfB(iEz) <Z fe(@1, 22, 23) <Z fD($3,$4)> <Z fE(l‘3,w5)>>> ;
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or, in summary notation,

g1(@1) = fa(@1) x > | fe(22)folzr,az,3) x | Y fo(es,zd) | x | Y fo(zs,es)

~{z1} ~{z3} ~{z3}
(3)
Similarly, we find that
g3(zs) = | D fa(zi)fp(z2)fo(mr,za,as) | x | D folxs,ed) | x [ D feles,s)
~{ws} ~{as} ~{ws}
(4)

In computer science, arithmetic expressions like the right-hand sides of (3) and (4)
are often represented by ordered rooted trees [37, Sect. 8.3], here called expression trees,
in which internal vertices (i.e., vertices with descendants) represent arithmetic operators
(e.g., addition, multiplication, negation, etc.) and leaf vertices (i.e., vertices without
descendants) represent variables or constants. For example, the tree of Fig. 2 represents
the expression z(y + z).

Figure 2: An expression tree representing = x (y + z).

When the operators in an expression tree are restricted to those that are completely
symmetric in their operands (e.g., multiplication and addition), it is unnecessary to order
the vertices to avoid ambiguity in interpreting the expression represented by the tree.
Thus, for example, Fig. 3(b) unambiguously represents the expression on the right-hand
side of (3), and Fig. 4(b) unambiguously represents the expression on the right-hand side
of (4). The operators shown in these figures are the function product and the summary;
operands are local functions or sub-expressions involving these operators.

Shown in Figs 3(a) and 4(a) is the factor graph of Fig. 1, redrawn as a rooted tree with
x1 and z3, respectively, as root vertex. This is possible because the global function defined
in (2) was carefully chosen so that the corresponding factor graph is a tree. Comparing
the factor graph with the corresponding tree representing the expression for the marginal
function, it is easy to note a correspondence between the two. This observation, though
simple, is key. When a factor graph is cycle-free, the factor graph not only encodes in its
structure the factorization of the global function, but also arithmetic expressions by which
the marginal functions associated with the global function may be computed.



(a)

Figure 3: (a) The factor graph of Fig. 1, redrawn as a rooted tree with z; as root. (b) A tree
representation for the expression representing the marginal function for ;.

2 .
fec oM fg
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@ @ @ @ ‘\Z_:j{_wﬁj ‘\z_:'_“{f”i})
fa /B fa “ Iz

(a) (b)

Figure 4: (a) The factor graph of Fig. 1, redrawn as a rooted tree with z3 as root. (b) A tree
representation for the expression representing the marginal function for x3.



Formally, as we show in Appendix A, to convert a cycle-free factor graph representing
a function g(z1,...,z,) to the corresponding expression tree for g;(z;), draw the factor
graph as a rooted tree with z; as root. Every node v in the factor graph then has a clearly
defined parent node, namely the neighboring node through which the unique path from v
to z; must pass. Replace each variable node in the factor graph with a product operator.
Replace each factor node in the factor graph with a “form product and multiply by f”
operator, and between a factor node f and its parent z, insert a {«} OPerator. These
local transformations are illustrated in Fig. 5(a) for a variable node, and in Fig. 5(b) for
a factor node f with parent z. Trivial products (those with fewer than two operands) act
as identity operators, or may be omitted if they are leaf nodes in the expression tree. A
summary operator »_ (2} applied to a function with a single argument z is also a trivial
operation, and may be omitted. Applying this transformation to the tree of Fig. 3(a)
yields the expression tree of Fig. 3(b), and similarly for Fig. 4. Trivial operations are
indicated with dashed lines in these figures.

To Parent

From Children

(a) (b)

Figure 5: Local substitutions that transform a rooted cycle-free factor graph to an expression
tree for a marginal function: (a) at a variable node; (b) at a factor node.

2.2 Computing a Single Marginal Function

Every expression tree represents an algorithm for computing the corresponding expression.
One might describe the algorithm as a recursive “top-down” procedure that starts at the
root vertex and evaluates each subtree descending from the root, combining the results as
dictated by the operator at the root. Equivalently, as will be preferable for us, one could
describe the algorithm as a “bottom-up” procedure that begins at the leaves of the tree,
with each operator vertex combining its operands, and passing the result as an operand
for its parent. For example, z(y + z), represented by the expression tree of Fig. 2, might
be evaluated starting at the leaf nodes y and z, evaluating y + 2, and passing the result
as an operand for the x operator, which multiplies the result with z.

Rather than working with the expression tree, it is simpler and more direct to de-
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scribe such marginalization algorithms in terms of the corresponding factor graph. The
description of such algorithms is greatly elucidated by imagining a processor associated
with each vertex of the factor graph, with factor graph edges representing channels by
which these processors may communicate. For us, “messages” sent between processors
are always simply some appropriate description of a function. (We describe some use-
ful representations in Section 5.5.) By a “product of messages” we mean an appropriate
description of the (pointwise) product of the corresponding functions, not (necessarily) lit-
erally the numerical product of the messages. Similarly, the summary operator is applied
to the functions, not necessarily literally to the messages themselves.

We describe now a message-passing algorithm that we call the “single-z sum-product
algorithm,” since it computes, for a single value of i, the marginal function g;(z;) in a
rooted cycle-free factor graph, with z; taken as root vertex. The computation begins at
the leaves of the factor graph. Each leaf variable node sends a trivial “identity function”
message to its parent, and each leaf factor node f sends a description of f to its parent.
Each vertex waits for messages from all of its children before computing the message to
be sent to its parent. This computation is performed according to the transformation
shown in Fig. 5, i.e., a variable node simply sends the product of messages received from
its children, while a factor node f with parent « forms the product of f with the messages
received from its children, and then operates on the result with a ) _ {z} OPerator. The
algorithm terminates at the root node z;, where the g;(z;) is obtained as the product of
all messages received at z;.

The message passed on an edge during the operation of the single-: sum-product
algorithm can be interpreted as follows. If e = {z, f} is an edge in the tree, where z
is a variable node and f is a factor node, then the analysis of Appendix A shows that
the message passed on e during the operation of the sum-product algorithm is simply
a summary for z of the product of the local functions descending from the vertex that
originates the message.

2.3 Computing all Marginal Functions at Once

In many circumstances, we may be interested in computing g;(z;) for more than one value
of 7. Such a computation might be accomplished by applying the single-: algorithm sepa-
rately for each desired value of ¢, but this approach is unlikely to be efficient, since many
of the subcomputations performed for different values of ¢ will be the same. Computation
of g;(z;) for all i can be efficiently accomplished at once, essentially by “overlaying” on a
single factor graph all possible instances of the single-: algorithm. No particular vertex is
taken as a root vertex, so there is no fixed parent/child relationship among neighboring
vertices. Instead, each neighbor w of any given vertex v is at some point regarded as a
parent of v. The message passed from v to w is computed just as in the single-z algorithm,
i.e., as if w were indeed the parent of v and all other neighbors of v were children.



Figure 6: Messages generated in each (circled) step of the sum-product algorithm.

As in the single-¢ algorithm, message-passing is initiated at the leaves. Each vertex
v remains idle until messages have arrived on all but one of the edges incident on v. Just
as in the single-t algorithm, once these messages have arrived, v is able to compute a
message to be sent on the one remaining edge to its neighbor (temporarily regarded as
the parent), just as in the single-7 algorithm, i.e., according to Fig. 5. Let us denote this
temporary parent as vertex w. After sending a message to w, vertex v returns to the idle
state, waiting for a “return message” to arrive from w. Once this message has arrived,
the vertex is able to compute and send messages to each of its neighbors (other than w),
each being regarded, in turn, as a parent. The algorithm terminates once two messages
have been passed over every edge, one in each direction. At variable node z;, the product
of all incoming messages is the marginal function g;(z;), just as in the single-i algorithm.
Since this algorithm operates by computing various sums and products, we refer to it as
the sum-product algorithm.

Fig. 6 shows the flow of messages that would be generated by the sum-product
algorithm applied to the factor graph of Fig. 1. The messages can be generated in five
steps, as indicated with circles in Fig. 6. In detail, the messages are generated as follows.

Step 1:

Prasa (@) = Y fa(z1) = fa(ey)

~{z1}

Ifa—ar(T2) = Z f(22) = fB(22)
~{z2}

Hay—fp (.’134) =1

/1'25—>fE('775) =1



Step 2:

leﬁfc(wl) = #’fA—HEl('Tl)
sz%fc("n?) = //‘fB—NEz('IZ)
Booas(T3) = > foyssp(2a) fp (23, 24)
~{z3}
MfE—>23(m3) = Z:uzs%fE(x5)fE(m37m5)
~Am3}
Step 3:
Mfc—)l’3(m3) = Z /lwlﬁfc(xl)p‘l‘z—)fc(wQ)fC(m17‘73271:3)
~{zs}
Mws%fc(x?)) = NfD%zs(x?»)ufE—)zs(m?r)
Step 4:
Bioon (81) = Y faysfo (83)Hay s po (22) fo (1, 22, 25)
~{z1}
,U'fc—mg(xZ) = Z Hm_}fc($3)Mm1_>fc($1)fc($1,2L'2,:I33)
~{z2}
st%fD(l':i) = P‘fc%l‘s(l'?r):ufE%ws(l'ii)
:uma—>fE(x3) = /‘fc—>m(m3):uf13—>$3($3)
Step b:
Mﬂh—*fA(xl) = Mfc—>$1('r1)
/‘1‘12—>fB(w2) = /’l‘fc—ﬂz(x?)
MfD—>z4(‘/E4) = Z /uwa—>fD(m3)fD(w3a'r4)
~{za}
Bfpsas(T5) = D ayote(73) fE (T3, T5)
~{zs}
Termination:
91(Z1) = fpysa (T1) oy (1)

(21) (z1)
(T2) = Kigosas (T2)fhfosar (T2)

93(23) = Kfosas (T3) hip—ses (T3)Hpp—es (23)
(24) = Hfp—res(Ta)

(25) (25)

= /-’LfE —T5 '1:5
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In the termination step, we have computed g;(z;) as the product of all messages
directed towards z;. Equivalently, since the message passed on any given edge is equal to
the product of all but one of these messages, we could compute g;(z;) as the product of
the two messages that were passed (in opposite directions) over any single edge incident
on z;. Thus, for example, we can compute gs3(x3) in three other ways:

93(1:3) = Hfc—zs (m3)/1‘23—>fc (1:3)
= Hfp—zs (w?)):uza—)fD (373)
Hfp—as ($3)Mzs—>fE (.’63)

Each edge e in a factor graph is of the form {z, f}, where z is a variable node and f
is a factor node. The variable associated with e is z. The sum-product algorithm operates
according to the following simple rule:

The Sum-Product Update Rule: The message sent from a node v on an edge
e is the product of the local function at v (or the unit function if v is a variable
node) with all messages received at v on edges other than e, summarized for the
variable associated with e.

According to this rule, the message sent on an edge e = {z, f} is always a function
of the variable z associated with that edge. Let p,_f(x) denote the message sent from
node z to node f in the operation of the sum-product algorithm, let 15, () denote the
message sent from node f to node z. Also, let n(v) denote the set of neighbors of a
given node v in a factor graph. Then, as illustrated in Fig. 7, the message computations
performed by the sum-product algorithm can be expressed as follows:

variable to local function:

posr(@) =[] troel) (5)

hen(x)\{f}

local function to variable:

ff—a(T) = Z f(X) H ty—1(Y) (6)

~{z} yen(f)\{z}

where X = n(f) is the set of arguments of the function f.

The update rule at a variable node z takes on the particularly simple form given
by (5) since there is no local function to include, and the summary for z of a product
of functions of z is simply that product. On the other hand, the update rule at a local
function node given by (6) in general involves nontrivial function multiplications, followed
by an application of the summary operator.

11



Figure 7: A factor graph fragment, showing the sum-product algorithm update rules.

3 Modeling Systems with Factor Graphs

We describe now a variety of ways in which factor graphs can be used to model systems,
i.e., collections of interacting variables. When a system is modeled probabilistically, a fac-
tor graph can be used to represent the joint probability mass function of the variables that
comprise the system. Factorizations of the this function can give important information
about statistical dependencies among these variables.

Likewise, in “behavioral” modeling of systems—as in the work of Willems [44]—
system behavior is specified in set-theoretic terms by specifying which particular config-
urations of variables are valid. This approach can be accommodated by a factor graph
that represents the characteristic (i.e., indicator) function for the given behavior. Factor-
izations of this characteristic function can give important structural information about
the model.

In some applications, we may even wish to combine these two modeling styles. For
example, in channel coding, we model both the valid behavior (i.e., the set of codewords)
and the a posterior: joint probability mass function among the variables that define the
codewords given the received output of a channel. For important classes of channels (e.g.,
memoryless channels) we will find that these models are closely related.

To assist in behavioral modeling, we find “Iverson’s convention” [17, p. 24] to be
a useful notation. If P is a predicate (i.e., Boolean proposition) involving some set of
variables, then [P] is the binary function that indicates the truth of P, i.e.,

[P]::{ 1 if P; ™

0 otherwise.

For example, if z, y, and z take values in some field, then f(z,y,z) = [z +y = 2] is
the function that takes a value of 1 if the condition z + y = z is satisfied, and value 0
otherwise. We will use Iverson’s convention in formulas only in those contexts in which

12



it is sensible to have a {0, 1}-valued quantity.

If we let A denote the logical conjunction or “AND” operator, then an important
property of Iverson’s convention is that

[PLAPyA--- AP, =[P][P] [P (8)

where we implicitly assume that 1-1 =1, and for all , 0- z = - 0 = 0. Thus, if P can
be written as a logical conjunction of predicates, then [P] can be factored according to
(8), and hence represented using a factor graph.

3.1 Behavioral Modeling

Let zy, zo, . .. , x,, be a collection of variables with configuration space S. By a behavior in
S, we mean any nonempty subset B of S. The elements of B are the valid configurations.
A system is specified via its behavior B, hence this approach is known as behavioral
modeling.

Behavioral modeling occurs very naturally in coding theory. If the domain of each
variable is taken to be some finite alphabet A, so that the configuration space is the n-fold
Cartesian product, S = A", then a behavior C' C S is called a block code of length n over
A, and the valid configurations are called codewords.

The characteristic (or set membership indicator) function for a behavior B is defined
as

xs(z1,...,2,) = [(21,... ,2,) € BJ.

It is obvious that specifying xp is equivalent to specifying B. (We might also give xp
a probabilistic interpretation by noting that xp is proportional to a probability mass
function that is uniform over the valid configurations.)

In many important cases, membership of a particular configuration in a behavior
B can be determined by applying a series of tests, each involving some subset of the
variables. A configuration is deemed valid if and only if it passes all tests, i.e., the
predicate (z1,... ,x,) € B can be written as a logical conjunction of a series of “simpler”
predicates. Then xp factors according to (8) into a product of simpler “local factors”
or checks each of which is itself a characteristic function indicating whether a particular
subset of variables is “locally valid.” Such a factorization can be represented using a
factor graph.

» Example 2. (Tanner Graphs for Linear Codes)
The characteristic function for any linear [n, k] code can be represented by a factor graph

13



having n variable nodes and (at least) n — k factor nodes. For example, if C' is the binary
linear code with parity-check matrix

110010
H=|01100 1|, (9)
101100

then C is the set of all binary 6-tuples x = (1,22, ... ,xq) satisfying three simultaneous
equations expressed in matrix form as Hx” = 0. (This is a so-called kernel representation,
since the linear code is defined as the set of vectors in the kernel of a particular linear
transformation.) Membership in C is completely determined by checking whether each of
the three equations is satisfied.

According to (8),

xc(@1,22,...,26) = [(21,22,... ,36) € C]
= [z1® 2 ® x5 = 0][z2 ® 23 B z6 = 0][z1 D 23 B 24 = 0],

where @ denotes the sum in GF(2). The corresponding factor graph is shown in Fig. 8,
where we have used a special symbol for the parity checks (a square with a “+” sign
instead of a black square). Although strictly speaking the factor graph represents the
code’s characteristic function, we will often refer to the factor graph as representing the
code itself. A factor graph obtained in this way is often called a Tanner graph, after [39].

Figure 8: A Tanner graph for the binary linear code of Example 2.

It should be obvious that a Tanner graph for any [n, k| linear block code can be
obtained from a parity-check matrix H = [h;;] for the code. Such a parity-check matrix
has n columns and at least n — k£ rows. Variable nodes correspond to the columns of
H and factor nodes (or checks) to the rows of H, with an edge connecting factor node
¢ to variable node j if and only if h;; # 0. Of course, since there are in general many
parity-check matrices that represent a given code, there are in general many Tanner graph
representations for the code. <

Often when dealing with systems, a description of a system is simplified by introduc-
ing hidden (sometime called auxiliary, latent, or state) variables. Non-hidden variables
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are referred to as being visible. A particular behavior B (with both auxiliary and visible
variables) is said to represent a given (visible) behavior C if the projection of the elements
of B on their visible coordinates is equal to C'. Any factor graph for B is then consid-
ered simultaneously to be a factor graph for C. Following Forney [11], we will refer to a
factor graph representing the characteristic function for a behavior with hidden variables
as a TWL (Tanner/Wiberg/Loeliger) graph (see [42, 43]). In our factor graph diagrams,

hidden variable nodes are indicated with a double circle.

An important class of models with hidden variables are the trellis representations
for codes (see, e.g., [40] for an excellent survey). A trellis for a block code C' is an edge
labeled directed graph with distinguished root and goal vertices, essentially defined by
the property that the sequence of edge labels encountered in each directed path from the
root vertex to the goal vertex is always a codeword in C, and that each codeword in C
is represented by at least one such path. For example, Fig. 9(a) is a trellis for the code
of Example 2. The root vertex is left-most, the goal vertex is right-most and edges are
implicitly directed from left to right.

Every vertex in a trellis has a natural depth d, 0 < d < n, defined as the distance
from the root vertex, which has depth 0. The set of depth d vertices can be viewed as the
domain of a state variable sq.

A trellis divides naturally into sections, where the ith trellis section 7; is the subgraph
of the trellis induced by the vertices at depth ¢ — 1 and depth i. The set of edge labels in
T; can be viewed as the domain of a (visible) variable z;. In effect, each trellis section T;
defines a “local behavior” that must be obeyed by s; 1, z;, and s;.

Globally, a trellis defines a behavior in the configuration space of the variables
S0y-«+ y8n, L1y .. ,Z,. A configuration of these variables is valid if and only if it satisfies
the local constraint imposed by each of the trellis sections. The characteristic function
for this behavior thus factors naturally into n factors, where the ¢th factor corresponds
to trellis section 7;, and has s;_1, z;, and s; as arguments.

The following example illustrates these concepts in detail for the code of Example 2.

» Example 3. (A Trellis Description)

Fig. 9(a) shows a trellis for the code of Example 2, and Fig. 9(b) shows the corresponding
TWL graph. In addition to the visible variable nodes zy, x5, ... , 24, there are also hidden
(state) variable nodes sg, s1, ..., sg. Each local check, shown as a generic factor node
(black square), corresponds to one section of the trellis.

In this example, 75, the local behavior corresponding to the second trellis section
from the left in Fig. 9, consists of the following triples (sy, z2, s2):

Ty = {(0,0,0),(0,1,2),(1,1,1),(1,0,3)}, (10)
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Figure 9: A trellis (a) and the corresponding TWL graph (b) for the code of Fig. 8.

where the alphabet of the state variables s; and s, was taken to be {0,1} and {0, 1, 2, 3},
respectively, numbered from bottom to top in Fig. 9(a). Each element of the local behavior
corresponds to one trellis edge. The corresponding check in the TWL graph is the indicator
function f(s1, 2, s2) = [(s1, T2, 52) € Th]. <

It is important to note that the factor graph corresponding to a trellis is cycle-free.
Since every code has a trellis representation, it follows that every code can be represented
by a cycle-free factor graph. Unfortunately, it often turns out that the size of domains of
the state variables (i.e., the number of states in the trellis) can easily become too large
to be practical. Turbo codes, for example, have trellis representations with enormous
state spaces [16]. However, there are factor graph representations for these code having
reasonable complexity, but necessarily having cycles.

Trellises are convenient representations for a variety of signal models. For example,
the generic factor graph of Fig. 10 can represent any time-invariant (or indeed, time-
varying) state space model. As in Fig. 9, each local check represents a trellis section, i.e.,
each check is an indicator function for the set of allowed combinations of left state, input
symbol, output symbol, and right state. Here, a trellis edge has both an input label and
an output label.

» Example 4. (State-space models)
For example, the classical linear state space model is given by the equations

z(j +1) = Az(j)

_|_
y(j) = Cz(j) +



Figure 10: Generic factor graph for a time-invariant trellis.

where j € Z is the discrete time index, where u(j) = (uy(j),-.. ,ur(j)) are the time-j in-
put variables, y(j) = (y1(4), .- ,yn(J)) are the output variables, z(7) = (z1(4),... ,2m(J))
are the state variables, and where A, B, C', and D are matrices of the appropriate dimen-
sions. The equation is over some (finite or infinite) field F'.

Any such system gives rise to the factor graph of Fig. 10. The time-; check function
F2(3),u(i),y(G),z(j +1)): F™ x FF x F" x F™ — {0,1} is

f(@(5),u(3),4(5),2(G + 1)) = [2(j + 1) = Az(5) + Bu(j)ly(j) = Cz(j) + Du(5)]-

In other words, the check function enforces the local behavior required by (11). <

3.2 Probabilistic Modeling

We turn now to another important class of functions that we will represent by factor
graphs: probability distributions. Since conditional and unconditional independence of
random variables is expressed in terms of a factorization of their joint probability mass or
density function, factor graphs for probability distributions arise in many situations. We
expose one of our primary application interests by starting with an example from coding
theory.

» Example 5. (APP Distributions)

Consider the situation most often modeled in coding theory, in which a codeword =z =
(21,...,2,) is selected from a code C of length n, and transmitted over a channel with
corresponding output y = (y1, ... ,ys). For each fixed observation y, the joint a posteriori
probability (APP) distribution for the components of z (i.e., p(z|y)) is proportional to the
function g(z) = f(y|z)p(x), where p(z) is the a priori distribution for the transmitted
vectors, and f(y|z) is the conditional probability density function for y when z is trans-
mitted. We consider g(z) to be a function of z only, with the components of y entering
as parameters.

Assuming that the a prior: distribution for the transmitted vectors is uniform over
codewords, we have p(z) = xc¢(z)/|C|, where xc(z) is the characteristic function for C
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Figure 11: Factor graph the joint APP distribution of codeword symbols.

and |C| is the number of codewords in C'. Assuming also that the channel is memoryless,
then by definition f(y|z) factors as

n

Fsee s ynlzn, ooy za) = [T Fwili)-

i=1
Under these assumptions, we have
1 n

g($1,. .- ,.’L‘n) = EXC(%,--- 7:En) };[lf(yt|'r1) (12)

As described in the previous subsection, the characteristic function x¢ () itself may factor
into a product of local indicator functions. Given a factor graph F' for x¢(z), we obtain a
factor graph for (a scaled version of) the APP distribution over x simply by augmenting
F with factor nodes corresponding to the different f(y;|z;) factors in (12). The ith such
factor has only one argument, namely z;, since y; is regarded as a parameter. Thus, the
corresponding factor nodes appear as pendant vertices (“dongles”) in the factor graph.

For example if C is the binary linear code of Example 2, we have

9(@1,...x6) = [E1@ 2B a5 =0][22D 23D w6 = 0] [21 D 23D 7y =0]-
6
Hf(yi|33i)7
i=1

whose factor graph is shown in Fig. 11. <

Various types of Markov models are widely used in signal processing and communi-
cations. The key feature of such models is that they imply a nontrivial factorization of
the joint probability mass function of the random variables in question. This factorization
can be represented with a factor graph.

» Example 6. (Markov chains, hidden Markov models)
In general, let f(z1,...,z,) denote the joint probability mass function of a collection of
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Figure 12: Factor graphs for probability distributions: (a) the trivial factor graph, (b) the
chain-rule factorization, (c) a Markov chain, (d) a hidden Markov model.

random variables. By the chain rule of conditional probability, we may always express
this function as

f("rla"' 71.?1) = Hf(mz|x1a 7xi—1)-
i=1

For example if n = 4, we have

[y, wa) = fa) f@2]o) f@s]o, 22) f@a| 21, 22, 23)
which has the factor graph representation shown in Fig. 12(b).

In general, since all variables appear as arguments of f(z,|z1,... ,2,_1), the factor
graph of Fig. 12(b) has no advantage over the trivial factor graph shown in Fig. 12(a).
On the other hand, suppose that random variables X;, X5, ... ,X,, (in that order) form
a Markov chain. We then obtain the nontrivial factorization

n

f@y,. o m) =[] f(@ilwiy)

=1
whose factor graph is shown in Fig. 12(c).

If, in this Markov chain example, we cannot observe each X, directly, but instead
can observe only the output Y, of a memoryless channel with X; as input, we obtain
a so-called “hidden Markov model.” The joint probability mass or density function for
these random variables then factors as

n

f(xla s 3 Ty Y1, - 7yn) = H f(xz|xz—1)f(yz|wz)

=1
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whose factor graph is shown in Fig. 12(d). Hidden Markov models are widely used in
a variety of applications; see, e.g., [36] for a tutorial emphasizing applications in signal
processing.

Of course, since trellises are Markov models for codes, the strong resemblance be-
tween the factor graphs of Fig. 12(c) and (d) and the factor graphs representing trellises
(Figs. 9(b) and 10) is not accidental. <

Factor graphs are not the first graph-based language for describing probability dis-
tributions. In Appendix B we describe very briefly the close relationship between factor
graphs and models based on undirected graphs (Markov random fields) and models based
on directed acyclic graphs (Bayesian networks).

4 'Trellis Processing

As described in the previous section, and important family of factor graphs are trellises,
since they represent Markov models that are widely used in various applications. We
now apply the sum-product algorithm to trellises, and show that a variety of well-known
algorithms—the forward/backward algorithm, the Viterbi algorithm, and the Kalman
filter—may be viewed as special cases of the sum-product algorithm.

4.1 The Forward/Backward Algorithm

We start with the forward/backward algorithm, sometimes referred to in coding theory
as the BCJR algorithm [4] or “MAP” algorithm. This algorithm is an application of the
sum-product algorithm to the hidden Markov model of Example 6, shown in Fig. 12(d),
or to the trellises of examples Examples 3 and 4 (Figs. 9 and 10) in which certain variables
are observed at the output of a memoryless channel.

The factor graph of Fig. 13 models the situation at hand, which is a combina-
tion of behavioral and probabilistic modeling. We have vectors u = (ug, uy1,... ,ug 1),
x = (zg,1,... , &, 1), and 8 = (g, ..., s,) that represent, respectively, input variables,
output variables and state variables in a Markov model, where each variable is assumed
to take on values in a finite domain. Valid behavior is defined by local check functions
Ti(si, i, w;, Siy1), as described in Examples 3 and 4. To handle situations such as termi-
nated convolutional codes, we also allow for “autonomous behavior” in which the input
variable is suppressed in certain trellis sections, as in the rightmost trellis section of Fig. 13.

This model is considered a “hidden” Markov model because we assume that we cannot
observe the output symbols directly, but rather only the vector y = (v, y1,... ,¥n_1) that
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arises at the output of memoryless channel with x at its input. As discussed in Example 5,
the a posterior: joint probability mass function for u, s, and x given the observation y is
proportional to

n—1 n—1

g(u,s,x; y) = HE(thi)uia Si-l-l) H f(y'b|wl)

=0 2=0

where y is considered a parameter of g (not an argument). The factor graph of Fig. 13
represents this factorization of g.

o8 SO8 SOk SO

D, @)

f(yolzo) M fyi|z) B f(yo|zo) M f(ys|23)

Figure 13: The factor graph on which the forward/backward algorithm operates: the s; are
state variables, the u; are input variables, the z; are output variables, and each y; is the
observation at the output of a memoryless channel with z; at the input.

Given the observation of y, we would like to find, for each ¢, p(u;|y), the a posteriori
probabilities (APPs) for the input symbols. From probability theory, it follows that these
APP values are proportional to marginal functions associated with g, i.e.,

p(uz|y) & Z g(u,s,x;y).

~{ui}

Since the factor graph of Fig. 13 is cycle-free, these marginal functions can be computed
by applying the the sum-product algorithm to the factor graph of Fig. 13.

Initialization: Asusual in a cycle-free factor graph, the sum-product algorithm begins at
the leaf nodes. Trivial unit messages are sent by the input variable nodes and the endmost
state variable nodes. Each pendant factor node sends a message to the corresponding
output variable node. Since the output variable nodes are of degree two, no computation
is performed; instead, incoming messages are simply copied and sent to the corresponding
trellis check node.

Once the initialization has been performed, the two endmost trellis check nodes T
and T,, ; will have received messages on three of their four edges, and so will be in a
position to create an output message to a neighboring state variable node. Again, since
the state variables are of degree two, no computation is performed; incoming messages are
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simply copied. In the literature on the forward /backward algorithm (e.g., [4]), the message
te. 1, (2;) is denoted y(z;), the message p,. ,7.(s;) is denoted a(s;), and the message
s, T, (8;) is denoted B(s;). Additionally, the message pr. .. (u;) will be denoted 6(u;).

The operation of the sum-product algorithm creates two natural recursions: one al-
lowing a(s;11) to be computed as a function of a(s;) and y(z;) and the other allowing
B(s;) to be computed as a function of S(s;+1 and ~y(x;). These two recursions are re-
ferred to, respectively, as the forward and backward recursions due to the direction of
message flow in the trellis. The forward and backward recursions do not interact, so their
computation could occur in parallel. Fig. 14(a) gives a detailed view of these messages
for a single trellis section. The local function in this figure represents the trellis check
'E(Si,uz‘,mi,siﬂ)-

Ol gt g

Figure 14: A detailed view of the messages passed during the operation of the for-
ward /backward algorithm.

The Forward/Backward Recursions: Specializing the general update equation (6) to
this case, we find:

alsip1) = Z Ti (84, wiy i, siv1)a(si)y(z;),

~{siy1}

B(si) = > Ti(si,ui, @i, 5i41)B(5041)7(x:).
~{si}

The algorithm terminates with the computation of the 6 messages.

Termination:

S(w) = Y Tilsi,ui,zi, siv1)a(s:)B(sis1)y ().
~Aui}

In each of these sums, the summand is zero except for combinations of s;, u;, z;
and s;,; representing a valid trellis edge; fundamentally, therefore, these sums can be
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viewed as being defined over valid trellis edges. For each edge e = (s;, u;, z;, s;41) we let
ale) = a(s;), Be) = B(si+1) and y(e) = v(z;). Denoting by F;(s) the set of edges incident
on a state s in the ith trellis section, the a and 3 update equations can be re-written as

asi) = Y, ale)y(e) (13)

e€E;(sit1)

Bs:) = Y Ble)y(e):

ecE; (Si)

The basic operation in the forward and backward recursions is, therefore, a “sum of
products.”

The a and [ messages have a well-defined probabilistic interpretation: «a(s;) is pro-
portional to the conditional probability mass function for s; given the observation of the
“past” yo,...,yi 1; i.e., for each state s; € S;, a(s;) is the conditional probability that
the transmitted sequence passed through state s; given observation of the past. Similarly,
B(si+1) is proportional to the conditional probability mass function for s;;; given the
observation of the “future” y;y1,¥y;s2,..., i.e., the conditional probability that the trans-
mitted sequence passed through state s; ;. The probability that the transmitted sequence
took a particular edge e = (s;, z;, 5;+1) € T; is given by a(s;)y(z;)B(si+1) = a(e)y(e)B(e).

Note that if we were interested in the APPs for the s vector, or for the x vector,
these could also be computed by the forward/backward algorithm. See [36] for a tutorial
on some of the applications of the forward /backward algorithm to applications in signal
processing.

4.2 The Min-Sum Semiring and the Viterbi Algorithm

Rather than being interested in the APPs for the individual symbols, we might in many
cases be interested in determining which valid configuration has largest APP. When all
codeword are a priori equally likely, this amounts to maximum-likelihood sequence de-

tection (MLSD).

As mentioned in Section 1, the codomain R of the global function g represented by
a factor graph can in general be any semiring with two operations ‘+’ and ‘-’, satisfying
the distributive law:

(Vz,y,2€ R) z-(y+2)=(z-y)+ (z-2). (14)

In any such semiring, a product of local functions is well defined, as is the notion of
summation of values of g. It follows that the “not-sum” or summary operation is also
well-defined. In fact, our observation that the structure of a cycle-free factor graph encodes
expressions (i.e., algorithms) for the computation of marginal functions is essentially an
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application of the distributive law (14), and so applies equally well to the general semring
case. This key observation is central to the “generalized distributive law” of [2].

A semiring of particular interest to solve the MLSD problem is the “max-product”
semiring, in which real summation is replaced with the “max” operator. For non-negative
real-valued quantities z, y, and z,

z(max(y, z)) = max(zy, zz),

so the distributive law is satisfied. Furthermore, with maximization as a summary op-
erator, the maximum value of a non-negative real valued function g(zi,...,z,) can be
viewed as the “complete summary” of g, i.e.,

max g(zq,... ,&,) = Zg(m,... y Tn),
~{0}

where we have used the “not-sum” notation for maximization. We will be interested not
only in determining this maximum value, but also in finding a valid configuration x that
achieves this maximum.

In practice, MLSD is most often carried out in the negative log-likelihood domain.
Here, multiplicative decompositions become additive, but the structure of the underlying
factor graph is unaffected. The ‘max’ operation becomes a ‘min’ operation, so that we
deal with the “min-sum” semiring. For real z, y, 2,

z + min(y, z) = min(z + y, z + 2)
so the distributive law is satisfied.

Let f(x,s|y) = —alnp(x,s|y) + b where a and b are any convenient constants with
a > 0. Applying the sum-product (or, more accurately, the min-sum) algorithm in this
context yields the same message flow as in the forward/backward algorithm. As in the
forward backward algorithm, we write an update equation for the various messages. For
example, the basic update equation corresponding to (13) is

o(sua) = _min_(ale) +7(e)), (15)

” A similar recursion applies in the

so that the basic operation is a “minimum of sums.
backward direction, and from the results of the two recursions the most likely sequence

can be determined. The result is a “bidirectional” Viterbi algorithm.

The conventional Viterbi algorithm operates in the forward direction only; however,
since memory of the best path is maintained and some sort of “traceback” performed
in making a decision, even the conventional Viterbi algorithm might be viewed as being
bidirectional.
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4.3 Kalman Filtering

In this section, we derive the Kalman filter (see, e.g., [3, 30]) as an instance of the sum-
product algorithm operating in the factor graph corresponding to the discrete-time linear
dynamical system similar to that given by (11). For simplicity, we focus on the case in
which all variables are scalars satisfying

zipn = Ajzi+ Bju;
yp = Cjz;+ Djw;

where z;, y;, u; and w; are the time-j state, output, input, and noise variables, respec-
tively, and A;, Bj, C;, and D, are assumed to be known scalars. Generalization to the
case of vector variables is standard but will not be pursued here. We assume that the
input u and noise w are independent white Gaussian noise sequences with zero mean and
unit variance, and that the state sequence is initialized by setting zo = 0. Since linear
combinations of jointly Gaussian random variables are Gaussian, it follows that the z;
and y; sequences are jointly Gaussian.

We use the notation
N(z,m, o) i= exp (— (@ — m)*/(20%) + K (o))

to represent Gaussian density functions, where m and o2 represent the mean and variance
of of the corresponding random variable and K (o) is a normalizing constant that is
irrelevant for our purposes. By completing the square in the exponent, we find that

N(:c,ml,a%)./\/’(x,mg,ag) x N('r’m&o'g)? (16)
where
2 2
o5mq + 07Mo
m3=—->2 "5 _
oy + 05
and
11\
2 B —_ —_—
=7+ 3)
Similarly, we find that
/ N(z,my, 0])N (y, az,03)dxr < N(y,amy,a’c] + a3). (17)

As in Example 5, given the particular Markov structure of this signal model, it is not
difficult to see that the conditional joint probability density function of the state variables
ZT1,...,T glven yq,... , Y is given by

Eal

f(xla"' 7$k|y1>"' 7yk Hf J,‘]|(I?] 1 y]|.'15]) (18)

Jj=1
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where f(z;|z;_1) is a Gaussian density with mean A; ;z; ; and variance B;‘?_l, and
f(yjlz;) is a Gaussian density with mean Cjz; and variance D]Z. The observed values
of the output variables enter as parameters, not as function arguments.

The conditional density function for z;, given observations up to time k is the marginal
function

Pur(zr) = fl@rly, -, u)

= /{ }f(a:l,... yTrlYL, - Yk)d(~ {zr})

where we have introduced an obvious generalization of the “not-sum” notation. The mean
of this conditional density, i.e., Zxyr = E[zk|t1,...,yr] is the minimum mean squared
error estimate of x;, given the observed outputs. This conditional density function can be
computed via the sum-product algorithm, using integration (rather than summation) as
a summary operation.

f@jlzia f(@jalz,
e '_)’(T}
PGli=1) [ PGl PG +105)

£ (yjlz;)
Figure 15: A portion of the factor graph corresponding to (18).

A portion of the factor graph that describes (18) is shown in Fig. 15. Also shown
in Fig. 15 are messages that are passed in the operation of the sum-product algorithm.
We denote by Pj;_1(z;) the message passed to z; from f(z;|z; ;. Up to scale, this
message is always of the form N(z;, 71, U;U_l), and so can be represented by the pair
(Mj1-1, 012.“._1). We interpret 7;;_; as a prediction of z; given the set of observations up
to time 7 — 1.

According to the product rule, applying (16), we have
Py(e;) = Piialz;)f(yslz))
A 2 2
N (zj, -1, 05,-0)N (¥), Cjzj, D;)
N(@j, M1, U?lj—l)N('rja ¥i/Ci, DJQ'/C]?)

(0.6
o< N (zj, g5, 07););
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where
D? - 1+CJ% i1
252 2
C'] il l—I-D-
C;o?

- J74li-1
mjlj—1+ Cz 2‘ T D2 (y — Cjmy);— 1)
VIV

and

V)

2
2 DJU\ -1

o2 =9 Ji=7
ili = 2 o2 D2
CJ gli— 1t

AN

Likewise, applying (17), we have

Piiyj(@i) / i1 (@ N(xj+17ijj>B]2)dwj
X N($J+17m1+1b’ J\]-I—l)
where
Mg, = Ajmy;
= Ajimi1+ Ki(y; — Cjriji1)
and
2 _ 2
ol = A ]|J+Bj
A2q2
1951i-1 2
9—2 + B’.
C] jlj—1 + Dj !
In (19), the value
o A;C; am 1

J ﬁ
Ciojj-1+ D5

(19)

is called the filter gain. These updates are exactly equal to the updates used by Kalman

filtering [3].

5 Turbo Processing: Operating the Sum-Product Al-

gorithm in Factor Graphs with Cycles

In addition to its application in cycle-free factor graphs, the sum-product algorithm can
also be applied to factor graphs with cycles simply by following the same message propa-
gation rules. Because of the cycles in the graph, an “iterative” algorithm with no natural
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termination will result, with messages passed multiple times on a given edge. In contrast
with the case of no cycles, the results of the sum-product algorithm operating in a factor
graph with cycles cannot in general be interpreted as being exact function summaries.
However, some of the most exciting applications of the sum-product algorithm—for ex-
ample, the decoding of turbo codes or low-density parity-check codes—arise precisely in
situations in which the underlying factor graph does have cycles. Extensive simulation
results (see, e.g., [7, 27, 28]) show that sum-product based decoding algorithms with very
long codes can astonishing performance (within a fraction of a decibel of the Shannon
limit in some cases), even though the underlying factor graph has cycles.

While descriptions of the way in which the sum-product algorithm is applied to a
variety of “compound codes” are given in [24], in this section, we restrict ourselves to three
examples: turbo codes [7], low-density parity-check codes [15], and repeat-accumulate

codes [10].

5.1 Message Passing Schedules

Although not necessary in a practical implementation, we assume that messages are passed
by the sum-product algorithm in synchronization with a global discrete-time clock, with
at most one message passed on any edge in any given direction at one time. Any such
message effectively replaces previous messages that might have been sent on the that edge
in the same direction. A message sent from node v at time ¢ will be a function only of the
local function at v (if any) and the (most recent) messages received at v at times prior to
i.

Since the message sent by a node v on an edge in general depends on the messages
that have been received on other edges at v, and a factor graph with cycles may not have
nodes of degree one, how is message passing initiated? We circumvent this difficulty by
initially supposing that a unit message (i.e., a message representing the unit function) has
arrived on every edge incident on any given vertex. With this convention, every node is
in a position to send a message at any time along any edge.

A message-passing schedule in a factor graph a specification of messages are passed
during each clock tick. Obviously a wide variety of message passing schedules are possi-
ble. For example, the so-called flooding schedule [24] calls for a message to pass in each
direction over each edge at each clock tick. Any schedule in which at most one message
is passed (anywhere in the graph), is called a serial schedule.

We will say that a vertex v has a message pending at an edge e if it has received
any messages on edges other than e after the transmission of the most previous message
sent on e. Such a message is pending since the messages more recently received can affect
the message to be sent on e. The receipt of a message at v from an edge e will create
pending messages at all other edges incident on v. Only pending messages ever need to
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be transmitted, since only pending messages have the potential to be different than the
previous message sent on a given edge.

In a cycle-free factor graph, assuming a schedule in which only pending messages are
transmitted, the sum-product algorithm will eventually halt in a state with no messages
pending. In a factor graph with cycles, however, it is impossible to reach a state with
no messages pending, since the transmission of a message on any edge of a cycle from
a node v will trigger a chain of pending messages that must return to v, triggering v to
send another message on the same edge, and so on indefinitely.

In practice, all infinite schedules are rendered finite by truncation. The sum-product
algorithm terminates, for a finite schedule, by computing, for each z;, the product of the
messages received at variable node z;. If z; has no messages pending, this computation
is equivalent to the product of the messages sent and received on any single edge incident
on z;.

5.2 Iterative Decoding of Turbo Codes

A “turbo code” or parallel concatenated convolutional code has the encoder structure
shown in Fig. 16(a). A block u of data to be transmitted enters the systematic en-
coder which produces u, and two parity-check streams p and q at its output. The first
parity-check stream p is generated via a standard recursive convolutional encoder; viewed
together, u and p would form the output of a standard rate 1/2 convolutional code. The
innovation in the structure of the turbo code is the manner in which the second parity-
check stream q is generated. This stream is generated by applying a permutation 7 to
the input stream, and applying the permuted stream to a second convolutional encoder.
All output streams u, p and q are transmitted over the channel. Both constituent con-
volutional encoders are typically terminated in a known ending state; the corresponding
symbols (to, t1, ps, g5 in Fig. 16(b)) are also transmitted over the channel.

Y

9

|_61_>
(a)

Figure 16: Turbo code: (a) encoder block diagram, (b) factor graph.

mua

A factor graph representation for a (very) short turbo code is shown in Fig. 16(b).
Included in the figure are the state variables for the two constituent encoders, as well as
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a terminating trellis section in which no data is absorbed, but outputs are generated.

Iterative decoding of turbo codes is usually accomplished via a message passing
schedule that involves a forward/backward computation over the portion of the graph
representing one constituent code, followed by propagation of messages between encoders
(resulting in the so-called extrinsic information in the turbo-coding literature). This is
then followed by another forward /backward computation over the other constituent code,
and propagation of messages back to the first encoder. This schedule of messages is
illustrated in [24, Fig. 10].

5.3 Low-density Parity-check Codes

Low-density parity-check (LDPC) codes were introduced by Gallager [15] in the early
1960s. LDPC codes are defined in terms of a regular bipartite graph. In a (j, k) LDPC
code, left nodes, representing codeword symbols, all have degree j7, while right nodes,
representing checks, all have degree k. For example, Fig. 17 illustrates the factor graph
for a short (2, 4) low-density parity-check code. The check enforces the condition that the
adjacent symbols should have even overall parity, much as in Example 2.

Figure 17: A factor graph for a low-density parity-check code.

Low-density parity-check codes, like turbo codes, are very effectively decoded using
the sum-product algorithm; for example MacKay and Neal report excellent performance
results approaching that of turbo codes using what amounts to a flooding schedule [27, 28].

5.4 Repeat-Accumulate Codes

Repeat-accumulate (RA) codes are a special, low-complexity class of turbo codes intro-
duced by Divsalar, et al., who initially devised these codes because their ensemble weight
distributions are relatively easily derived. An encoder for an RA code operates on k input
bits uy, ... ,u, repeating each bit () times, and permuting the result to arrive a sequence
21,...,2rQ- An output sequence zy,... ,z¢g is formed via an accumulator that satisfies
1 =21, and fore > 1, z; = z; 1+ 2.
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A factor graph for an RA code is shown in Fig. 18. The checks all enforce the condition
that incident variables sum to zero modulo 2. (Thus a degree two check enforces equality
of the two incident variables.)

Figure 18: A factor graph for a repeat-accumulate code.

5.5 Simplifications for Binary Variables and Parity-Checks

For particular decoding applications, the generic updating rules (5) and (6) can often be
substantially simplified. We treat here only the important case where all variables are bi-
nary (i.e., Bernoulli random variables) and all functions (except single-variable functions)
are parity checks, as in Figs. 11(b), Fig. 17, and Fig. 18. This includes, in particular,
low-density parity check codes and repeat-accumulate codes.

Consider the case where the probability mass function for a binary random variable
is represented as the binary vector (py,p1), where py + p1 = 1. We will normalize all
messages so that the latter equality is preserved. According to the generic updating rules,
when messages (pg, p1) and (qo, ¢1) arrive at a variable node of degree three, the resulting
(normalized) output message should be

P00 g1 ) ' (20)

VAR(po, P1,90,91) = (
(Po, P1, 00, ) Pogo + P1q1’ Podo + P11

Similarly, at a check node representing the function f(z,y,z) = [z ® y & z = 0] (where
‘oplus’ represents modulo-2 addition), we have

CHK (po, P1, 90, ¢1) = (Pogo + P141, Pog1 + P1Go)- (21)

We view (20) and (21) as specifying the behavior of the ideal “probability gates” illustrated
in Fig. 19 that operate much like logic gates, but with soft (“fuzzy”) values.

Since py+ p; = 1, binary probability mass functions can be parameterized by a single
value. Depending on the parameterization, various “probability gates” arise. We give
four different parameterizations, and derive the VAR and CHK functions for each.
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Figure 19: Ideal binary VAR and CHK “probability gate” functions.

Likelihood Ratio (LR)
Definition: A(po,p1) = po/p1-

VAR(/\l, )\2) = Al)\g
14+ A1

CHK(A1,Ag) = JVRSY
1 2

Log Likelihood Ratio (LLR)
Definition: A(po,p1) = In(py/p1)

VAR(A1,Az) = Ar+ A,
CHK(A1,A2) = In(cosh((A; + A2)/2)) —In (cosh ((A; — A2)/2)) (22)
2tanh™" (tanh(A;/2) tanh(A5/2)).

Likelihood Difference (LD)
Definition: §(po, p1) = po — P1

01 + 62
14 8109
CHK((Sl, 52) = (51(52

VAR(1, 52)

Signed Log Likelihood Difference (SLLD)
Definition: A(po, p1) = sgn(p1 — po) In |p1 — pol

sln (ggg;gmg;;g;) if sgn(A;) = sgn(Ag) = s

sinh((|]A Asl)/2 .
s -sgn(|A1| — |Az]) In (sinh(((ﬂAili—lAzH)//z)J if sgn(A;) = —sgn(A,) = —s

CHK(A1, A2) = sgn(Aq)sgn(Az)(|Aq] + [Az)

VAR(A, Ag) =
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In the LLR domain, we observe that for z > 1, In(cosh(z)) ~ |z| — In(2). Thus an
approximation to the CHK function (22) is

CHK(A1,As) & [(A1+ Ag)/2] = (A1 — As)/2]
= sgn(A;)sgn(Az) min(|A4], |Az]),

which turns out to be precisely the min-sum update rule.

By applying the equivalence between factor graphs illustrated in Fig. 20, it is easy to
extend these formulas to the case where variable nodes or check nodes have degree larger
than three. In particular, we can extend the VAR and CHK functions to more than two
arguments via the relations

VAR(Z1,2Z2...,2,) = VAR(z1,VAR(Z2,...,2,)),
CHK(z1,22...,2,) = CHK(z1,CHK(zg,...,z,)).

poe
P

Figure 20: Transforming variable and check nodes of high degree to multiple nodes of degree
three.

6 Factor Graph Transformations

In this section we describe a number of straightforward transformations that may be
applied to a factor graph. By applying these transformations, it is sometimes possible
to transform a factor graph with an inconvenient structure into a more convenient form.
For example, it is always possible to transform a factor graph with cycles into a cycle-
free factor graph, but at the expense of increasing the complexity of the local functions
and/or the domains of the variables. Nevertheless, such transformations can be useful
in some cases, and we apply them to derive a fast Fourier transform algorithm from the
factor graph representing the DFT kernel in Appendix C. Similar general procedures are
described in [22, 26].
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6.1 Clustering

It is always possible to cluster (i.e., group) nodes of like type—i.e., all variable nodes or
all function nodes—without changing the global function being represented by a factor
graph. We consider the case of clustering two nodes, but this is easily generalized to
larger groupings. If v and w are two nodes being clustered, simply delete v and w and
any incident edges from the factor graph, introduce a new node representing the pairing
of v and w, and connect this new node to nodes that were neighbors of v or w in the
original graph.

When v and w are variables with domains A, and A,, respectively, by the “pairing
of v and w” we mean a new variable (v, w) with domain A, x A,. Note that the size
of this domain is the product of the original domain sizes, which can imply a substantial
cost increase in computational complexity of the sum-product algorithm. Any function
f that had v or w as an argument in the original graph must be converted into an
equivalent function f’ that has (v,w) as an argument, but this is easily accomplished
without increasing the complexity of the local functions.

When v and w are local functions, by the pairing of v and w we mean the product of
the local functions. If X, and X,, denote the sets of arguments of v and w, respectively,
then X, U X,, is the set of arguments of the product. Pairing functions in this way
can imply a substantial cost increase in computational complexity of the sum-product
algorithm; however, clustering functions does not increase the complexity of the variables.

Figure 21: Grouping transformations: (a) original factor graph fragment, (b) variable nodes
y and z grouped together, (c) function nodes fz, fc and fg grouped together.

Grouping nodes may eliminate cycles in the graph so that the sum-product algorithm

in the new graph is exact. For example, grouping the nodes associated with y and z in
the factor graph fragment of Fig. 21(a) and connecting the neighbors of both nodes to the
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new grouped node, we obtain the factor graph fragment shown in Fig. 21(b). Notice that
the local function node fg connecting y and z in the original factor graph appears with
just a single edge in the new factor graph. Also notice that there are two local functions
connecting z to (y, 2).

The local functions in the new factor graph retain their dependences from the old
factor graph. For example, although fp is connected to z and the pair of variables (y, z),
it does not actually depend on z. So, the global function represented by the new factor
graph is

g(-.yzy,z,...) = o fale o) fplz,y, 2) folz,y, 2) fo(o o 5y, 2) fe(y, 2) fr(y, 2, .. .)
= - fale.. @) fB(z,y) fe(z,2) fo(-.. ,y) fe(y, 2) fr(z,...),

which is identical to the global function represented by the old factor graph.

In Fig. 21(b), there is still one cycle; however, it can easily be removed by grouping
function nodes. In Fig. 21(c), we have grouped the local functions corresponding to fj,

f& and fg:
fBCE(xay7z) = f’B(éL‘,y,Z)fév(LE,y,Z)f]IE(y,Z)
The new global function is

g( 7$7y7z7"') = fA( 7w)fBC’E(x7yaz)le("' 7y7z)f;7‘(y727"')7
= fA( ,.’L‘)fIB(.'L‘,y,Z)fé(f'L',y,Z)flE(y,Z)fb( ,y,Z)f}v(y,Z,...),

which is identical to the original global function.

In this case, by grouping variable vertices and function vertices, we have removed the
cycles from the factor graph fragment. If the remainder of the graph is cycle-free, then
the sum-product algorithm can be used to compute exact marginals. Notice that the sizes
of the messages in this region of the graph have increased. For example, y and z have
alphabets of size |A,| and |A,|, respectively, and if functions are represented by a list of
their values, the length of the message passed from fp to (y,z) is equal to the product
Ay l1A.]

6.2 Stretching Variable Nodes

In the operation of the sum-product algorithm, in the message passed on an edge {v, w},
local function products are summarized for the variable associated with the edge. Outside
of those edges incident on a particular variable node z, any function dependency on z is
represented in summary form; i.e., x is marginalized out.

Here we will introduce a factor graph transformation that will extend the region in
the graph over which  is represented without being summarized. Let ny(z) denote the
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set of nodes that can be reached from z by a path of length two in F'. Then ny(z) is a set
of variable nodes, and for any y € ny(z), we can pair z and y, i.e., replace y with the pair
(z,y), much as in a grouping transformation. The function nodes incident on y would
have to be modified as in a grouping transformation, but, as before, this modification
does not increase their complexity. We call this a “stretching” transformation, since we
imagine node x being “stretched” along the the path from z to v.

More generally, we will allow further arbitrary “stretching” of z. If B is a set of nodes
to which z has been stretched, we will allow z to be stretched to any element of ny(B), the
set of variable nodes reachable from any node of B by a path of length two. In “stretching”
z in this way, we retain the following basic property: the set of nodes to which z has been
paired (together with the connecting function nodes) induces a connected subgraph of the
factor graph. This connected subgraph generates a well defined set of edges over which z
is represented without being summarized in the operation of the sum-product algorithm.
Note that the global function is unaffected by this transformation.

Fig. 22(a) shows a factor graph, and Fig. 22(b) shows an equivalent factor graph in
which z; has been stretched to all variable nodes.

Figure 22: Stretching transformation: (a) original factor graph, (b) node z; is stretched to
z2 and z3, (c) the node representing 1 alone is now redundant and can be removed.

When a single variable is stretched in a factor graph, since all variable nodes represent
distinct variables, the modified variables that result from a stretching transformation are
all distinct. However, if we permit more than one variable to be stretched, this may no
longer hold true. For example, in the Markov chain factor graph of Fig. 12(c), if both
and z, are stretched to all variables, the result will be a factor graph with two vertices
representing the pair (21,z4). The meaning of such a peculiar “factor graph” remains
clear however, since the local functions and hence also the global function are essentially
unaffected by the stretching transformations. All that changes is the behavior of the
sum-product algorithm, since, in this example, neither x; nor x4 will ever be marginalized
out. Hence we will permit the appearance of multiple variable nodes for a single variable
whenever they arise as the result of a series of stretching transformations.

Fig. 22(b) illustrates an important motivation for introducing the stretching trans-
formation; it may be possible for an edge, or indeed a variable node, to become redundant.
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Let f be alocal function, let e be an edge incident on f, and let X, be the set of variables
(from the original factor graph) associated with e. If X, is contained in the union of the
variable sets associated with the edges incident on f other than e, then e is redundant. A
redundant edge can be deleted from a factor graph. (Redundant edges must be removed
one a time, because it is possible for an edge to be redundant in the presence of another
redundant edge, and become relevant once the latter edge is removed.) If all edges inci-
dent on a variable node can be removed, then the variable node itself is redundant and
can be deleted.

For example, the node containing 7 alone is redundant in Fig. 22(b) since each local
function neighboring z; has a neighbor (other than z1) to which z; has been stretched.
Hence this node and the edges incident on it can be removed, as shown in Fig. 22(c).
Note that we are not removing the variable xz; from the graph, but rather just a node
representing x;. Here, unlike elsewhere in this paper, the distinction between nodes and
variables becomes important.

Let = be a variable node involved in a cycle, i.e., for which there is a nontrivial path
P from z to itself. Let {y, f},{f, 2} be the last two edges in P, for some variable node y
and some function node f. Let us stretch x along all of the variable nodes involved in P.
Then the edge {z, f} is redundant and hence can be deleted since both z and (z,y) are
incident on f. (Actually, there is also another redundant edge, corresponding to traveling
P in the opposite direction.) In this way, the cycle from z to itself is broken.

By systematically stretching variables around cycles and then deleting a resulting
redundant edge to break the cycle, it is possible to use the stretching transformation to
break all cycles in the graph, transforming an arbitrary factor graph into an equivalent
cycle-free factor graph for which the sum-product algorithm produces exact marginals.
This can be done without increasing the complexity of the local functions, but comes
at the expense of an (often quite substantial) increase in the complexity of the variable
alphabets.

6.3 Spanning Trees

A spanning tree 71" for a connected graph G is a connected, cycle-free subgraph of G
having the same vertex set as G. Let F' be a connected factor graph with a spanning tree
T and for every variable node z of F', let n(z) denote the set function nodes having z
as an argument. Since 7' is a tree, there is a unique path between any two nodes of T,
and in particular between z and every element of n(z). Now suppose z is stretched to all
variable nodes involved in each path from z to every element of n(z), and let F’ be the
resulting transformed factor graph.

It turns out that every edge of F’ not in T is redundant and all such edges can
be deleted from F'. Indeed, if e is an edge of F’ not in T, let X, be the set of variables
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associated with e, and let f be the local function on which e is incident. For every variable
x € X,, there is a path in 7" from f to z, and z is stretched to all variable nodes along
this path, and in particular is stretched to a neighbor (in 7') of f. Since each element
of X, appears in some neighboring variable node not involving e, e is redundant. The
removal of e does not affect the redundant status of any other edge of F’ not in T, hence
all such edges may be deleted from F".

This observation implies that the sum-product algorithm can be used to compute
marginal functions exactly in any spanning tree 7' of F, provided that each variable z
is stretched along all variable nodes appearing in each path from z to a local function
having z as an argument. Intuitively, z is not marginalized out in the region of 7" in which
x is “involved.” We apply these ideas to derive a Fast Fourier Transform algorithm in
Appendix C.

7 Conclusions

Factor graphs provide a natural graphical description of the factorization of a global
function into a product of local functions. As such, factor graphs can be applied in a wide
range of application areas, as we have illustrated with a large number of examples.

A major aim of this paper was to demonstrate that a single algorithm—the sum-
product algorithm—operating in a factor graph following only a single conceptually simple
computational rule, can encompass an enormous variety of practical algorithms. As we
have seen, these include the forward/backward algorithm, the Viterbi algorithm, Pearl’s
belief propagation algorithm, the iterative turbo decoding algorithm, the Kalman filter,
and even certain fast Fourier transform algorithms! Various extensions of these algo-
rithms; for example, a Kalman filter with forward/backward propagation or operating in
a tree-structured signal model, although not treated in this paper, can be derived in a
straightforward manner by applying the principles enunciated in this paper.

We have emphasized that the sum-product algorithm can be applied to arbitrary
factor graphs, cycle-free or not. In the cycle-free case, we have shown that the sum-
product algorithm can be used to compute function summaries ezactly when the factor
graph is finite. In some applications, e.g., in processing Markov chains and hidden Markov
models, the underlying factor graph is naturally cycle-free, while in other applications,
e.g., in decoding of low-density parity-check codes and turbo codes, it is not. In the latter
case, a successful strategy has been simply to apply the sum-product algorithm without
regard to the cycles. Nevertheless, in some cases it might be important to obtain an
equivalent cycle-free representation, and we have given a number of graph transformations
that can be used to achieve such representations.

Factor graphs afford great flexibility in modeling systems. Both Willems’ behavioral
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approach to systems, and the traditional input/output approach fit naturally in the factor
graph framework. The generality of allowing arbitrary functions (not just probability
distributions) to be represented further enhances the flexibility of factor graphs. Factor
graphs also have the potential to unify modeling and signal processing tasks that are often
treated separately in current systems. In communication systems, for example, channel
modeling and estimation, separation of multiple users, and decoding can be treated in a
unified way using a single graphical model that represents the interactions of these various
elements. We feel that the full potential of this approach has not yet been realized, and we
suggest that further exploration of the modeling power of factor graphs and applications
of the sum-product algorithm will indeed be fruitful.

A From Factor Trees to Expression Trees

Let g(z,z1,...,2n_1) be a function that can be represented by a cycle free connected
factor graph, i.e., a factor tree T. We are interested in developing an expression for

Z g(z,z1,...,zN_1),

~{z}
the summary for  of g. We consider x to be the root of T', so that all other vertices of
T are descendants of z.

Assuming that = has K neighbors in T, then without loss of generality, g can be
written in the form
K

g(.’L‘, L1y - - ,.’L‘N_l) = H FZ(.'L',XZ)
i=1
where F;(z, X;) is the product of all local functions that are descendants of z’s ith neigh-
bor, and X is the set of variables that are descendants of z’s ¢th neighbor. Since 7" is a
tree, for i #j, X; N X; =0 and X4 U---UXg = {z1,... ,Xn-1}, Le, X1,... , Xk is a
partition of {z1,... ,zy_1}. This decomposition is represented by the generic factor tree
of Fig. 23, in which Fj(z, X;) is shown in expanded form.

Now, by the distributive law, and using the fact that Xy, ... , X are pairwise disjoint,
we obtain

Z g(z,z1,... ,2zN_1) = Z Z T Z Fy(z, X1)Fa(z, X3) -+ Fr(z, Xk)

N{;L} X1 Xo XK

_ (Z f($,X1)) (Z f(w,Xz)) (Z f(:c,XK)>
= H Z FZ(.’L',XZ),

1=1 ~{z}

39



Figure 23: A generic factor tree.

i.e., the summary for z of g is the product of the summaries for z of the F; functions.

Consider the case ¢ = 1. To compute the summary for z of Fy, observe that, without
loss of generality, Fi(z, X1) can be written as

Fi(z, X1) = fi(z,z1,... ,20)G1(z1, X11)Ga(®2, X12) - - - Gr(L, X11),

where, for convenience, we have numbered the arguments of g so that fi(z,z1,... ,2r)
is the first neighbor of z. This decomposition is illustrated in Fig. 23. We note that
{z1,... 21}, X11,... , X1 is a partition of X;. Again, using the fact that these sets are
pairwise disjoint and applying the distributive law, we obtain

> Fi(z, Xi)

Z fl(l‘,l‘l, e ,LE‘L)Gl(Z‘l,XH) e GL(:ELaXlL)

~{z} ~{x}
= Z fl({]?,.’l,'l,... ,.’L’L) (Z G1($17X11)> (Z GL(IEL,XlL))
Tl L X1 Xir
L
= > 9@ e, z) [ D Glai, Xu)
~{x} =1~}
In words, we see that if fi(z,zy,...,2r) is a neighbor of z, to compute the summary for

x of the product of the local functions in the subtree of T descending from f;, we should
do the following;:
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1. for each neighbor z; of f; (other than z), compute the summary for z; of the product
of the functions in the subtree descending from z;;

2. form the product of these summaries with f;, summarizing the result for z.

The problem of computing the summary for z; of the product of the local a subtree
descending from z; is a problem of the same general form with which we began, and
so the same general approach can be applied recursively. The result of this recursion
justifies the transformation of the factor tree for ¢ with z as root into an expression tree
for - (n g(z,21,... ,&n_1), as illustrated in Fig. 5.

B Other Graphical Models for Probability Distribu-

tions

Factor graphs are not the first graph-based language for describing probability distribu-
tions. In the next two examples, we describe very briefly the close relationship between
factor graphs and models based on undirected graphs (Markov random fields) and models
based on directed acyclic graphs (Bayesian networks).

B.1 Markov Random Fields

A Markov random field (see, e.g., [23]) is a graphical model based on an undirected graph
G = (V,E) in which each node corresponds to a random variable. The graph G is a
Markov random field (MRF) if the distribution p(vy, ... ,v,) satisfies the local Markov

property:
(Vo e V) p(e[V\{v}) = p(v[n(v)), (23)

where n(v) denotes the set of neighbors of v. In other words, G is an MRF if every
variable v is independent of non-neighboring variables in the graph, given the values of
its immediate neighbors. MRF's are well developed in statistics, and have been used in a
variety of applications (see, e.g., [23, 35, 21, 20]).

A clique in a graph is a collection of vertices which are all pairwise neighbors. Under
fairly general conditions (e.g., positivity of the joint probability density is sufficient), the
joint probability mass function of an MRF can be expressed as the product of a collection
of Gibbs potential functions, defined on the set ) of cliques in the MRF, i.e.,

p(v1,v2, .. yon) = Z7 [ fe(Ve) (24)
EeqQ
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Figure 24: Graphical probability models: (a) a Markov random field, (b) a Bayesian network,
(c) a factor graph.

where Z 1 is a normalizing constant, and each E € Q is a clique. For example (cf. Fig. 1),
the MRF in Fig. 24(a) can be used to express the factorization

p(v1,v2,v3,v4,v5) = Z7 " fo(v1,v2,v3) fp (v3, v4) f2(vs, U5).

Clearly (24) has precisely the structure needed for a factor graph representation.
Indeed, a factor graph representation may be preferable to an MRF in expressing such
a factorization, since distinct factorizations, i.e., factorizations with different Qs in (24),
may yield precisely the same underlying MRF graph, whereas they will always yield
distinct factor graphs. (An example in a coding context of this MRF ambiguity is given
in [24].)

B.2 Bayesian Networks

Bayesian networks (see, e.g., [34, 22, 12]) are graphical models for a collection of random
variables that are based on directed acyclic graphs (DAGs). Bayesian networks, combined
with Pearl’s “belief propagation algorithm” [34], have become an important tool in expert
systems. The first to connect Bayesian networks and belief propagation with applications
in coding theory were MacKay and Neal [27], and more recently at least two papers
[24, 33] develop a view of the “turbo decoding” algorithm [7] as an instance of probability
propagation in a Bayesian network code model.

Each node v in a Bayesian network is associated with a random variable. Denoting
by a(v) the set of parents of v (i.e., the set of vertices from which an edge is incident on
v), by definition, the distribution represented by the Bayesian network is written as

n

p(v1,v2,. .. ,va) = [ [ pluila(vy)), (25)

=1
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where, if a(v;) = 0, (i.e., v; has no parents) then we take p(v;|#) = p(v;). For example—
cf. (2)—Fig. 24(b) shows a Bayesian network that expresses the factorization

p(v1, v2, v3,v4, v5) = p(v1)p(v2)p(v3|v1, va)p(va|v3)p(vs|vs)- (26)

Again, as do Markov random fields, Bayesian networks express a factorization of a
joint probability distribution that is suitable for representation by a factor graph. The
factor graph corresponding to (26) is shown in Fig. 24(c); cf. Fig. 1.

It is a straightforward exercise to translate the update rules that govern the operation
of the sum-product algorithm to Pearl’s belief propagation rules [34, 22]. It is easy to
convert a Bayesian network into a factor graph: simply introduce a function node for each
factor p(v;|a(v;)) in (25) and draw edges from this node to v; and its parents a(v;). An
example conversion from a Bayesian network to a factor graph is shown in Fig. 24(c).

Equations similar to Pearl’s belief updating and bottom-up/top-down propagation
rules [34, pp. 182-183] can easily be derived from the general sum-product algorithm
update equations (5) and (6) as follows.

Figure 25: Messages sent in belief propagation.

In belief propagation, messages are sent between “variable nodes,” corresponding to

the dashed ellipses for the particular Bayesian network shown in Fig. 25. If, in a Bayesian
network, an edge is directed from vertex p to vertex c then p is a parent of ¢ and c is a
child of p. Messages sent among between variables are always functions of the parent p.
In [34], a message sent from p to c is denoted 7.(p), while a message sent from c to p is
denoted as A.(p), as shown in Fig. 25 for the specific Bayesian network of Fig. 24(c).

Consider the central variable, 3 in Fig. 25. Clearly the message sent upwards by the
sum-product algorithm to the local function f contained in the ellipse is, from (5), given
by the product of the incoming A messages, i.e.,

Has—1(23) = Agy (T3) Ay (23)-
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The message sent from f to z; is, according to (6), the product of f with the other
messages received at f summarized for z;. Note that that this local function is the
conditional probability mass function f(z3|z1,z2), hence

Aas (71) = (Aay(23)Aay (23) f (23|21, T2) 70y (22)) | 1
Z Az4 (373)Am5 ($3) Z f(:L'3|:I,‘1, '732)7[-1‘3 (:E?)

Similarly, the message 7,,(z3) sent from z3 to the ellipse containing x4 is given by

Toa(23) = Aay(@3) ((F(@al2r, @2) ey (1), (2)) 4 23)
= Az 22f$3|$1,l‘2 Ty (1) Ty (22).

In general, let us denote the set of parents of a variables z by a(z), and the set of children
of z by d(z). We will have, for every a € a(z),

A(a) = H N(2) (x]a(z)) (o) | La (27)

ded(z pea(z)\{a}

and, for every d € d(z),

@)= [ M@ | fela@) ] ml@ | L. (28)

ced(z)\{d} aca(z)

The termination condition for cycle-free graphs, called the “belief update” equation in
[34], is given by the product of the messages received by z in the factor graph:

BEL(x H Az H Ta(a (29)

ded(z aca(z

Pearl also introduces a scale factor in (28) and (29) so that the resulting messages properly
represent probability mass functions. The relative complexity of (27)—(29) compared
with the simplicity of the sum-product update rule given in Section 2 provides a strong
pedagogical incentive for the introduction of factor graphs.

C The FFT

An important observation due to Aji and McEliece [1, 2] is that various fast transform
algorithms can be developed using a graph-based approach. In this section we show how
this approach can be used to derive a Fast Fourier Transform (FFT).
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The discrete Fourier transform (DFT) is a widely used tool for the analysis of discrete-
time signals. Let w = (wy,... ,wy_1) be a complex-valued N-tuple, and let = e/27/N,
with j = 4/—1, be a primitive Nth root of unity. The DFT of w is the complex-valued
N-tuple W = (W, ... ,Wy_1) where

N-1
We=> w, Q™ k=0,1,...,N—1. (30)
n=0

Consider now the case where N is a power of two, e.g., N = 8 for concreteness. We
express variables n and k in (30) in binary; more precisely, we let n = 4z + 221 + 27 and
let k = 4y> + 2y; + yo, where z; and y; take values from {0,1}. We write the DFT kernel,
which we take as our global function, in terms of the z;s and y;s as

9(T0, T1, T2, Yo, U1, U2) = Wawy 20y ay L (452251 H00) (4924201 490)
= f(fvo, Ty, l‘g)(—l)zzyo (_1)m1y1 (_1)zoy2 (j)ﬂmyl (j)leyo () %o%o
where f(zg,T1,T2) = Wagy+24, 12, and we have used the relations Q16 = 0% =1, Q* = —1,

and Q2 = j. We see that the DFT kernel factors into a product of local functions as
expressed by the factor graph of Fig. 26(a).

We observe that
Wi = Way, 12y, 490 = Z Z 29(50075817502790791792) (31)
zQ 1 T2

so that the DFT can be viewed as a marginal function, much like a probability mass
function. When N is composite, similar prime-factor-based decompositions of n and k
will result in similar factor graph representations for the DFT kernel.

The factor graph in Fig. 26(a) has cycles, yet we wish to carry out exact marginal-
ization, so we form a spanning tree. There are many possible spanning trees, of which
one is shown in Fig. 26(b). (Different choices for the spanning tree will lead to possibly
different DFT algorithms when the sum-product algorithm is applied.) If we cluster the
local functions as shown in Fig. 26(b), essentially by defining

a(:L'g, yO) = (_1>20y07
b($17y07y1) = (_1)211/1 (_j)zlyoa
C($07y07y17y2) — (_l)zoyz (_j)zoylgzo?m’

we arrive at the spanning tree shown in Fig. 26(c). The variables that result from the
required stretching transformation are shown. Although they are redundant, we have
included variable nodes z; and x;. Observe that each message sent from left to right is
a function of three binary variables, which can be represented as a list of eight complex
quantities. Along the path from f to (yo,v1,¥2), first zo, then z;, and then z, are
marginalized out as yg, y1, and y, are added to the argument list of the functions. In
three steps, the function w,, is converted to the function Wj. Clearly we have obtained a
fast Fourier transform as an instance of the sum-product algorithm.
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Figure 26: The discrete Fourier transform kernel: (a) factor graph; (b) a particular spanning
tree; (c) spanning tree after clustering and stretching transformation.
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