CSC412 — Assignment #4

Due: March31, 2006 2pm in tutorial or Pratt283
Worth: 15%
Late assignments not accepted.

1 Training a Profile HMM to align DNA sequences

In this assignment, you will train a Profile HMM to align several fragments of DNA sequences representing various
versions of the haemogloben protein coding region. You will train the model using maximum likelihood as a cost
function and the EM algorithm as an optimizer. The data consist of 59 subsequences, each of length 100 base pairs,
over the alphabet {a, ¢, g,t}; in the files these are represented by {1,2,3,4} respectively.

e As a reminder, the HMM is an unsupervised learning model for sequence data Y = {y; ...yr} which uses a
discrete hidden state sequence X = {x;...2zr} to explain the observations.
As you know, the joint probability over hidden states and observations factorizes as follows:
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where S is the state transition matrix, m governs the initial state distribution and the matrix A controls the
output parameters of each state.

e The marginal probability of an observed sequence is given by summing over all possible state trajectories:

logp({y1,--.yr}) =log > p({z1,...ar} {yr,. . yr})
{z1,..z7}

e The model is trained to maximize the log likelihood of a set of training sequences, i.e. the sum of the log
likelihoods for each sequence: L = chzl logp({y§, ... y5})

2 Profile (String-Edit) HMMs

In a profile HMM, we learn an unknown “template”, which is a (probabilistic) sequence designed to explain each
observation sequence using insertions, deletions, substitutions and matches. The hidden states come in three types:
insert, delete and match/substitute. Each template position has associated with it exactly one insert state, one delete
state, and one match state (which does matches and substitutions). We will also add a special “end state” after the
last template position.

e There are exactly 3N + 1 states (including the end state) in a profile HMM where N is the length of the
template being assumed.

e Most of the transition probabilities are zero, since transitions are permitted only between states at the same
position or neighbouring positions in the template.



e In this assignment, we will use a simplified version of the profile HMM in which all the transition probabilities
depend only on the type of state into which the transition is occuring (but not on the type of the state from which
the transition is starting or on position within the template). In particular, the probability of transitioning
into a match state is o no matter what state you are coming from, and the probability of transitioning into
an insert or delete state is (1 — a)/2 regardless of the previous state. To be explicit, here are all the transition
values (where w represents any of {match,ins,del}):
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e The END state can only be reached from the states in the last template position, N. Once the model enters
the END state, it stays there forever. The output model for the end state outputs only the special end symbol,
which you should append after the final position of each training sequence, to force the model to reach the end
state after outputting the rest of the sequence.

3 What to do

Using the forward-backward and Baum-Welch equations for inference and learning, train a profile HMM on the DNA
sequences provided. Of couse, you must make sure your equations correctly deal with the deletion states in the
profile HMM and properly handle multiple training sequences. In particular:

e Use the C=59 sequences of length T=100 provided in the file a4dna.mat as your data.
e Use N=100 template positions in the model, giving 301 states in all.

e Do not train the transition matrix S or the initial state distribution 7 or the output model for the END state.
Put zeros in all the places where they belong, and use a value of @« = 0.95 for the nonzero transitions, as
described above. During training, do not perform any updates on S or m or Agnp. Since you are not updating
the transitions, you won’t need to compute any joint expectations of the form &;;(t) = p(z; = 4, 2411 = j|Y).
Instead you only need to compute the marginal expectations v;(t) = p(z; = i|Y).

e At each iteration, run the o and [ recursions to compute the state expectations and the likelihood in the
E-step, and update the output paramters A for the insert and match states using the Baum-Welch formulas
for the M-step. (Remember, there are no output parameters for the delete states, and you are not updating S
or m or Apnp. You also need to modify the oo — 3 recursions as explained in the notes to deal properly with
delete states.)

e Continue iterating until convergence. You can assess convergence of EM by monitoring the log likelihood and
stopping when the fractional change (newlik-o0ldlik)/abs(newlik) is very small (say less than one part in a
thousand.) Remember, your log likelihood should never decrease!

e Restart the training at several random initializations of the parameters, and run EM to convergence each time.
Keep the parameter set which gave the best average training likelihood.

After training the model, do Viterbi (MAP) decoding on each training sequence to find the most likely state path
through the model given the observation sequence. (Use the model parameters from your best run.)

This will tell you, for each symbol, whether the model used a deletion, insertion or a match/substitution to a template
position (and if so which one) to generate it.



4 What to hand in

6

A plot of the trajectory of the average training log likelihood per sequence for at least three different runs of
EM (with different random initial parameters), including the run that resulted in the best parameters. Show
iterations of EM horizontally and average log likelihood vertically.

Clearly indicate the stopping criteria used to assess convergence of EM

Using the best model parameters, for each match state, find the most likely symbol to be output from that
state. Display this sequence of 100 most likely symbols, which is the single most likely output from the model.

A display of the aligned data, based on the MAP state estimate of each sequence, made as follows:

When the model goes through a delete state, output a ’:’. When the model goes through an insert state, output
the corresponding symbol from the sequence as a capital letter, A/T/C/G. When the model goes through a
match state, output the corresponding symbol from the sequence as a lowercase letter, a/t/c/g.

Another display of the aligned data, based on the MAP state estimate of each sequence, made as follows:

If the model went through the match state corresponding to template position n, print the corresponding
symbol from the sequence in column 7 of the output. If the model went through the delete state and/or the
insert state corresponding to template position n (but not the match state), print a space in column n of the
output.

Some hints

Initialze the output parameters of the insert and match states to be roughly uniform, plus enough noise to
explore different local optima. Don’t forget to renormalize the columns of A after you add noise.

Be careful about numerical scaling. You can either use a rescaling trick to renormalize o and (8 as you go, or
you can represent the log of @ and 2 and use logsum when you need to update them in the recursions.

Initializing the a recursion is a bit tricky. Think it over carefully, asking yourself, what states could the model
end up in after generating only a single output symbol.

When dealing with the END state,you can introduce a special “end” symbol, which appears exactly once in
each training sequence, at the very last position (101). Then you can make a a special case in the piece of code
that computes A x so that if y(t) is the end symbol, then Ay is either zero (if k£ is not the END state)
or one (if k is the END state). Ay ; should be zero if & is the END state and y(t) is not the end symbol.

Optional Stuff

Something fun you can try, which you won’t be graded on:

Try redoing the first display of the algined data above so that whenever a symbol yf in sequence c is generated
from a particular match state, it appears on row ¢ but in the same column of the ascii output as all other
symbols generated from that same match state. This involves padding each output line with some spaces (or
another blank character, such as ’-’) to get the symbols from various match states lined up properly. This
effectively combines the two displays I asked you to make above into a single display which simultaneously
shows exactly what alignment happend to each sequence and what the template looks like.



