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EXPECTATION-MAXIMIZATION (EM) ALGORITHM

o |terative algorithm with two linked steps:
E-step: fill in values of 2! using p(z|x, 8").
M-step: update parameters using 17! «— argmax £(0;x, 2!).
e E-step involves inference, which we need to do at runtime anyway.
M-step is no harder than in fully observed case.

o We will prove that this procedure monotonically improves /¢
(or leaves it unchanged). Thus it always converges to a local
optimum of the likelihood (as any optimizer should).

e Note: EM is an optimization strategy for objective functions that
can be interpreted as likelihoods in the presence of missing data.

e EM is not a cost function such as “maximum-likelihood"”.
EM is not a model such as “mixture-of-Gaussians" .

REMINDER: LEARNING WITH LATENT VARIABLES

e With latent variables, the probability contains a sum, so the log
likelihood has all parameters coupled together:

((0:D) =log » _ p(x,z|0) =log »_ plz]0.)p(x|z, 0,)

(we can also consider continuous z and replace > with [)

o If the latent variables were observed, parameters would decouple
again and learning would be easy:

((0; D) = log p(x,2|0) = log p(z|0-) + log p(x|z, 0:)
e One idea: ignore this fact, compute 9¢/00, and do learning with a
smart optimizer like conjugate gradient.

e Another idea: what if we use our current parameters to guess the
values of the latent variables, and then do fully-observed learning?
This back-and-forth trick might make optimization easier.

COMPLETE & INCOMPLETE LOG LIKELIHOODS

e Observed variables x, latent variables z, parameters 6:
60(9 X, Z) = logp(x, Z|9)
is the complete log likelihood.

e Usually optimizing ¢.(6) given both z and x is straightforward.
(e.g. class conditional Gaussian fitting, linear regression)

e With z unobserved, we need the log of a marginal probability:
0(6;%) = log p(x|0) = log Y _ p(x, 2|0)
VA

which is the incomplete log likelihood.




ExpPECTED COMPLETE LOG LIKELIHOOD

e For any distribution ¢(z) define expected complete log likelihood-:

lg(0:x) = (Lel0:x,2))g = ) qlz|x) log p(x, z|0)

o Amazing fact: £(0) > (4(0) + H(q) because of concavity of log:
= 1ogzp(x, z|0)

1og2q )P xzye) /

> Zq z|x) log |Z‘)9) /

o Where the inequality is called Jensen's inequality.
(It is only true for distributions: > ¢(z) =1; ¢(z) > 0.)

£(0;x) = log p(x]0)

M-STEP: MAXIMIZATION OF EXPECTED /.

o Note that the free energy breaks into two terms:
0
= a2
q(z|x)
—Zq z|x) logpx z|0) — Zq z[x) log q(z|x)
= fq(9,X) +H(q)

(this is where its name comes from)

e The first term is the expected complete log likelihood (energy) and
the second term, which does not depend on 6, is the entropy.

e Thus, in the M-step, maximizing with respect to 6 for fixed ¢ we
only need to consider the first term:
o1 = argmaxy l4(0;x) = argmaxy Z z|x) log p(x, z|0)

Z

LoweERrR BOUNDS AND FREE ENERGY

e For fixed data x, define a functional caIIed the free energy:

= S ate tog 22219 )

q(z[x)

e The EM algorithm is coordinate-ascent on F"
E-step: ¢t = argmax, (g, 0')
M-step: O+l = argmaxy  F(¢'t1, 6%
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E-STEP: INFERRING LATENT POSTERIOR

e Claim: the optimim setting of ¢ in the E-step is:
¢ = plelx, 0")
e This is the posterior distribution over the latent variables given the

data and the parameters. Often we need this at test time anyway
(e.g. to perform classification).

e Proof (easy): this setting saturates the bound ¢(6;x) > F(q,0)

), ot f p(x,2|0")
F(p(z|x,0),0% Zp |x010g(’X9t)

= Zp z|x, 0") log p(x[¢")
= log p(x0") =, plz[x, 6")
=/0(0;x)-1

e Can also show this result using variational calculus or the fact that
((0) — F(q,0) = KL[ql|p(z[x, 0)]




EM CONSTRUCTS SEQUENTIAL CONVEX LOWER BOUNDS

EXAMPLE: MIXTURES OF (GAUSSIANS

o Consider the likelihood function and the function F(g!*1,-). e Recall: a mixture of K Gaussians:
, likelihood p(x[0) = > 5 apN (x| g, Sp)
0(0;D) =3, log 3 N (x" | e, Ze)
‘ e Learning with EM algorithm:
E — step: p’,jm = N(x”\,u};, E}i)
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Recap: EM ALGORITHM EM ror MOG
e A way of maximizing likelihood function for latent variable models. 3% L=1 s L=4 s
Finds ML parameters when the original (hard) problem can be Q g ﬁ @
broken up into two (easy) pieces: > e O / . %
1. Estimate some “missing” or “unobserved” data from observed .
dat d t ters.
a.a an -CLll‘rren par?me ers | | o @ ) @ ©
2. Using this “complete” data, find the maximum likelihood
parameter estimates. L=e ,@ L=8 3 L=10 Q L= 3
o Alternate between filling in the latent variables using our best guess ‘. ‘.
(posterior) and updating the paramters based on this guess: ° {9 ﬁ @'
E-step: ¢/ = p(z|x, 0% Nt

M-step: 07" = argmaxy 3", q(z|x) log p(x, z|6)
e In the M-step we optimize a lower bound on the likelihood.
In the E-step we close the gap, making bound=likelihood.
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DERIVATION OF M-STEP

e Expected complete log likelihood 4(6; D):
1 _ 1
55 thn o — " = TS )~ o2y |
nok
e For fixed ¢ we can optimize the parameters:
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e Fact: 7613?;1'1_41_ [ — AT and _6x(;,14x =xx'

PARTIALLY HIDDEN DATA

e Of course, we can learn when there are missing (hidden) variables
on some cases and not on others.

e |n this case the cost function was:
(6:D) = > logp(xy0) + Y 1ogzlogp ", yl6)
complete missing

e Now you can think of this in a new way: in the E—step we estimate
the hidden variables on the incomplete cases only.

o The M-step optimizes the log likelihood on the complete data plus
the expected likelihood on the incomplete data using the E-step.

COMPARE: K-MEANS

e The EM algorithm for mixtures of Gaussians is just like a soft
version of the K-means algorithm.

e In the K-means “E-step” we do hard assignment:

1 : A -1/ ,n
= argming (x" — ,u};)TEk (x" — )

e In the K-means “M-step” we update the means as the weighted
sum of the data, but now the weights are 0 or 1:

t+1 _
tH1 _ Zn[ - ]Xn

k Zn[ t+1 ]

A REPORT CARD FOR EM

e Some good things about EM:
—no learning rate parameter
—very fast for low dimensions
—each iteration guaranteed to improve likelihood
— adapts unused units rapidly
e Some bad things about EM:

—can get stuck in local minima

—both steps require considering all explanations of the data which
is an exponential amount of work in the dimension of 6

e EM is typically used with mixture models, for example mixtures of
Gaussians or mixtures of experts. The “missing” data are the labels
showing which sub-model generated each datapoint.

Very common: also used to train HMMs, Boltzmann machines, ...




VARIANTS

e Sparse EM:

Do not recompute exactly the posterior probability on each data
point under all models, because it is almost zero.
Instead keep an “active list” which you update every once in a

while.

o Generalized (Incomplete) EM: It might be hard to find the ML

parameters in the M-step,

even given the completed data. We can

still make progress by doing an M-step that improves the likelihood

a bit (e.g. gradient step).




