LECTURE 7:

FuLLy OBSERVED TREES

Sam Roweis

January 26, 2004

UNDIRECTED TREE GRAPHICAL MODELS

e Undirected trees are connected, acyclic graphs with exactly (D-1)
edges if there are D nodes (variables).

e For undirected trees, the cliques are all pairs of connected nodes.
1
== H ¥i(Ti, Tr;)
1

where we can make Z = 1 with the choice v; = p(x;|xr,) except
for one clique involving the root: ¥ = p(z;)p(z;|zr;)

e Trees have no “explaining-away” (converging arrows).
Therefore, d-separation and regular separation are equivalent.

e Directed and undirected trees are equivalent and the choice of root
is arbitrary (for fully observed models).

e Another characterization of trees: there is exactly one path between
any pair of nodes (without doubling back).

DIRECTED TREE GRAPHICAL MODELS

e Directed trees are DAGMs in which each variable x; has exactly one
other variable as its parent x, except the “root” ot Which has
no parents. Thus, the probability of a variable taking on a certain
value depends only on the value of its parent:

p(x) = p(Troot) H p(Ii|I7T2‘)
1#root
e Trees are the next step up from assuming independence.
Instead of considering variables in isolation, consider them in pairs.

X X

O 3n

NB: each node (except root) has
exactly one parent, but nodes
may have more than one child.

LIKELIHOOD FUNCTION

e Notation:
yi = a node ; and its single parent xr,.
V; = set of joint configurations of node 7 and its parent xr,
(Yroot = Troot and Voot = Vioot)

e Directed model likelihood:

5(9;D)=Zlogp("y =Y |logpr(x)) + > log (" x,")

n itr
= ZZ Z v]log p;(v) indicator trick
1 vEV;
= Z > Ni(v)logpi(v)
i veV;

where N;(v) = >, [y} = v] and p;(v;) = p(z;|zr,).

MORE ON THE LIKELIHOOD FUNCTION

STRUCTURE LEARNING

e Undirected model likelihood:

D) =ZlogHwi y7)
—ZZ Z v]log ¢hi(v)

i vEV;
=Z > Ni(v)log t(v)
1 VEV;

where N;(y) = Zn[y? =yl and ¥;(y;) = p(zi|zr,).
(Except for one clique involving the root: 1; = p(xr)p(:vj\ij))

e Directed and undirected likelihoods are the same!

e Trees are in the exponential family with y; as sufficient statistics.

e What about the tree structure (links)?
How do we know which nodes to make parents of which?

X

e
Q\/@mi@xm

e Bold idea: how can we also learn the optimal structure?
In principle, we could search all combinatorial structures, for each
compute the ML parameters, and take the best one.

e But is there a better way? Yes. It turns out that structure learning
in tree models can be converted to a good old computer science
problem: maximum weight spanning tree.

MaXIMUM LIKELIHOOD PARAMETERS GIVEN STRUCTURE

OPTIMAL STRUCTURE

e Trees are just a special case of fully observed graphical models.

o For discrete data x; with values v;, each node stores a conditional
probability table (CPT) over its values given its parent’s value.
The ML parameter estimates are just the empirical histograms of
each node's values given its parent:

P (i = vilag, = vj) = N(zi = vi,or; = v)) _ Niya)
Zvi N(z; = vj, o, = vj) Nwi(vj)

except for the root which uses marginal counts Ny (v,)/N.

e For continuous data, the most common model is a two-dimensional
Gaussian at each node. The ML parameters are just to set the
mean of p;(y;) to be the sample mean of [x;; x7,] and the
covariance matrix to the sample covariance.

e In practice we should use some kind of smoothing/regularization.

e Let us rewrite the likelihood function:

(6:D) = 37 N(x)logplx)

XEVan
=Y N(x) | logp(x,) + > logp(xi|zs,)
X i#r
e ML parameters, are equal to the observed frequency counts ¢(-):
é*
N= > ax) |loga(x,) + Y logq(xi|zs,)
X€Van i#r
:Zq(x) log q(x, +Zl T“T;‘
X 7#7 i
T77 ’r,
=Y qx)) o %8 a@) Z 2103,(1 X;)
X i#r

e NB: second term does not depend on structure.

EDGE WEIGHTS

MAXiMUM LIKELIHOOD TREES

e Each term in sum i # r corresponds to an edge from i to its parent.

Z

q(xi,xﬁv)
= T, Tr,) log ———"=+C
2 2 dlawam)loeeons

= Lo Sl

i#r TiTn
qlyi)
iy Q<x7)Q(Im>
= Z W(i;m)+ C
i#r

where the edge weights 1 are defined by mutual information:

z;,x:) 1o (x“x‘])
= X deoe)los s

e So overall likelihood is sum of weights on edges that we use.
We need the maximum weight spanning tree.

We can now completely solve the tree learning problem:

1. Compute the marginal counts ¢(z;) for each node
and pairwise counts g(x;, ;) for all pairs of nodes.

2. Set the weights to the mutual informations:

q(xi, v5)
= alei)) log(e

Ja(z;)

3. Find the maximum weight spanning tree A=MWST (V).

4. Using the undirected tree A chosen by MWST, pick a root
arbitrarily and orient the edges away from the root.
Set the conditional functions to the observed frequencies:
q(xivxmj) o Q(xhxm')

plailem) = Yo, t@nrn) alrn)

KRUSKAL'S ALGORITHM (GREEDY SEARCH)

e To find the maximum weight spanning tree A on a graph with
nodes U and weighted edges E:
1. A «— empty
2. Sort edges E by nonincreasing weight: ey, e9,...,€ex.
3.for k=1to K {A +=e}. unless doing so creates a cycle}

NOTES

e Any directed tree consistent with the undirected tree found by the
algorithm above will assign the same likelihood to any dataset.

e Amazingly, as far as likelihood goes, the root is arbitrary.
We can just pick one node and orient the edges away from it.
Or we can work with undirected models.

e For continuous nodes (e.g. Gaussian), the situation is similar,
except that computing the mutual information requires an integral.

e Mutual information is the Kullback-Leibler divergence
(cross-entropy) between a distribution and the product of its
marginals. Measures how far from independent the joint
distribution is.

W(i;) = Mg 25] = KL{g(zg, 2j) [l q(xi)q(2)]

RS,
G~ @;@ .g%a»
[e
coetg s
D S N C N ST
@@ G, 2 S
&
eETS
@'@Ph)
OF G
= =D
2 < ?
Gt D =
S T o @ &
e ®
= @Q@
@R TE
GO o —

