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MULTIPLE OBSERVATIONS, COMPLETE DATA, IID SAMPLING

e A single observation of the data X is rarely useful on its own.

e Generally we have data including many observations, which creates

a set of random variables: D = {x* x2, ... xM}

e We will assume two things:
1. Observations are independently and identically distributed
according to joint distribution of graphical model: 1ID samples.
2. We observe all random variables in the domain on each
observation: complete data.

e We shade the nodes in a graphical model to indicate they are
observed. (Later you will see unshaded nodes corresponding to
missing data or latent variables.)
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LEARNING GRAPHICAL MODELS FROM DATA

e In Al the bottleneck is often knowledge acquisition.

e Human experts are rare, expensive, unreliable, slow.
But we have lots of machine readable data.

e Want to build systems automatically based on data and a small
amount of prior information (e.g. from experts).
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e In this course, our “systems” will be probabilistic graphical models.

= Geoff Hinton

e Assume the prior information we have specifies type & structure of
the GM, as well as the mathematical form of the parent-conditional
distributions or clique potentials.

e In this case learning = setting parameters.
(“Structure learning” is also possible but we won't consider it now.)

LIKELIHOOD FUNCTION

e So far we have focused on the (log) probability function p(x|6)
which assigns a probability (density) to any joint configuration of
variables x given fixed parameters 6.

e But in learning we turn this on its head: we have some fixed data
and we want to find parameters.

e Think of p(x|#) as a function of € for fixed x:
L(0;x) = p(x[0)
£(0;%) = log p(x|6)

This function is called the (log) “likelihood”.

e Chose 6 to maximize some cost function ¢(6) which includes ¢(6):

c(0) = £(0; D) maximum likelihood (ML)
c(0) =106;D)+r(0) maximum a posteriori (MAP)/penalized ML

(also cross-validation, Bayesian estimators, BIC, AIC, ...)




MAXiMUM LIKELIHOOD

e For IID data:
p(DI8) = [ p(x™6)

(0:D) = 3 logpx"0)

e Idea of maximum likelihod estimation (MLE): pick the setting of
parameters most likely to have generated the data we saw:

*
Oy, = argmaxy £(0; D)
e Very commonly used in statistics.
Often leads to “intuitive”, “appealing”, or “natural” estimators.

e For a start, the |ID assumption makes the log likelihood into a sum,
so its derivative can be easily taken term by term.

ExXAMPLE: BERNOULLI TRIALS

e We observe M iid coin flips: D=H,H, T H,...
e Model: p(H) =6 p(T)=(1-20)
e Likelihood:
((6; D) = logp(D|)
=log [J¥" (1 —0)' ™"
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e Take derivatives and set to zero:
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SUFFICIENT STATISTICS

e A statistic is a (possibly vector valued) function of a (set of)
random variable(s).

e T'(X) is a “sufficient statistic” for X if
T(xYHY =T(xR) =T0d(0;x'y= L(6:x>) Vo
e Equivalently (by the IOmrerrizafTOheorem) we can write:
p(x[f) = h (x@'(x)) g (T'(x),6)

e Example: exponential family m]ogsls: 5
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EXAMPLE: MULTINOMIAL

e We observe M iid die rolls (K-sided): D=3,1,K,2,...
o Model: p(k) =0, > .0 =1
e Likelihood (for binary indicators [x"" = k]):
{(6; D) = log p(D|6)
= log H Oxm = log H ngmzu e 91[:("":];]

m m

= Zlog@kZ[Xm =k| = ZNkbgek'
L k

m

o Take derivatives and set to zero (enforcing > ;. 0 = 1):
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ExXAMPLE: UNIVARIATE NORMAL

e We observe M iid real samples: D=1.18,-.25,.78,. ..
o Model: p(z) = (2r02)~ Y2 exp{—(z — p)?/202}
e Likelihood (using probability density):

((0;D) = log p(DI0)
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e Take derivatives and set to zero:
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EXAMPLE: LINEAR REGRESSION
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e At a linear regression node, some parents (covariates/inputs) and
all children (responses/outputs) are continuous valued variables.

e For each child and setting of discrete parents we use the model:
plylx,0) = gauss(y|0"x, 02)
e The likelihood is the familiar “squared error’ cost:
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e The ML parameters can be solved for using linear least-squares:
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o Sufficient statistics are input correlation matrix and input-output
cross-correlation vector.

ExXAMPLE: UNIVARIATE NORMAL

EXAMPLE: LINEAR REGRESSION




SUFFICIENT STATISTICS ARE SUMS

e In the examples above, the
sufficient statistics were merely
sums (counts) of the data:
Bernoulli: # of heads, tails

Multinomial: # of each type @

Gaussian: mean, mean-square

Regression: correlations X T(X) 0
e As we will see, this is true for all Q‘—O‘—Q

exponential family models: (b)

sufficient statistics are the

average natural parameters. X T(X) 6
e Only* exponential family models 0—070

have simple sufficient statistics. ©

ExXAMPLE: A DIRECTED MODEL

e Consider the distribution defined by the DAGM:
p(x]0) = p(x1]601)p(x2[x1, 02)p(x3[x1, O3)p(x4|x2, X3, 01)

e This is exactly like learning four separate small DAGMs, each of

which consists of a node and its parents (not its Markov blanket).
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MLE rForR DIRECTED GMs

e For a directed GM, the likelihood function has a nice form:
log p(D|6) = ogHHp X} X, 0;) ZZ 0g p(x}" [Xz;, 0;)
) m )

e The parameters decoup/e; SO we can maximize ||ke||hood
independently for each node’s function by setting 6,.

e Only need the values of x; and its parents in order to estimate 6.
o Furthermore, if x;, X, have sufficient statistics only need those.

e In general, for fully observed data if we know how to estimate
params at a single node we can do it for the whole network.
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MLE rFOrR MULTINOMIAL NETWORKS

e Assume our DAGM contains only discrete nodes, and we use the
(general) multinomial form for the conditional probabilities.

o Sufficient statistics involve counts of joint settings of x;, X7,
summing over all other variables in the table.

e Likelihood for these special “fully observed multinomial networks":

0(0: D) = log [ [ p(x}"|xx,"". 6;)
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MLE FOrR GENERAL EXPONENTIAL FAMILY MODELS

e Recall the probability function for models in the exponential family:
p(x0) = h(x) exp{n"T(x) — A(n)}
e For iid data, the sufficient statistic vector is ), T'(x""):

((n; D) =logp(Dln) = (Z log h(X’")) —MA(n)+ (UT Mor (xm)>

e Take derivatives and set to zero:
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recalling that the natural moments of an exponential distribution
are the derivatives of the log normalizer.




