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MEDICAL DIAGNOSIS
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e In medical diagnosis the observations are clinical findings (what's
wrong with this person), the domain knowledge represents which
diseases or ailments have which symptoms, as well as which
diseases are most likely for certain types of patients.

e The expert opinion takes the form of possible diagnosis (what
ailment is most likely to be causing their problems).

GENERAL MOTIVATION FOR EXPERT SYSTEMS
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e Expert Systems attempt to combine domain knowledge with noisy
observations and use a rational inference engine (often
probabilistic) to come up with a conclusion or opinion.

e The two main problems in expert systems are how to encode the
domain knowledge and how to perform inference efficiently.

QuicK MEDICAL REFERENCE (QMR-DT)

e Quick Medical Reference, Decision Theoretic (QMR-DT)
Is a very large graphical model based on expert knowledge acquired
from medical doctors and clinical records in hospitals.

e There are 570 diseases and 4075 manifestations, which include
symptoms, demographic data about the patient, medical history,
and results of laboratory tests.

o We represent these using binary random variables d;. and f;,
encoding all non-binary manifestations (e.g. continuous values or
categorical findings) with one-hot or range values.

e The domain knowledge was not learned from data directly using
maximum likelihood, etc. Instead it was captured from the
historical medical literature and from expert opinions and encoded
into the graphical model by hand.




QuickK MEDICAL REFERENCE (QMR-DT)
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INFERENCE 1S THE KEY

e The full posterior is huge (exponential in the number of diseases),
so we can only ever hope to compute its marginals.

e Even just to compute the likelihood requires a large amount of work
because we have to sum over all possible disease configurations.

d: disease configuration
f: findings

prior conditional joint

o :

Pd|f) = P(d) P(f|d) P(d,f)
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QuicK MEDICAL REFERENCE (QMR-DT)

e The graphical model asserts that manifestations are conditionally
independent given the diseases:

p(d, ) = |[[pdi)| []]P(fild)
k i

e The conditional model for activation of the manifestations given
the diseases is noisy-OR:

log p(f; = 0ld) = wip + > _ w;pdy
k

e Most of the time very few diseases are active (less than 9), and zero
or one diseases account for 72% of the mass under the disease prior.

e Also, usually between a few and a hundred manifestations are
observed out of the 4075 possibilities.

e The noisy-OR weights are also very sparse: only 2% are nonzero.

INFERENCE IN 2-LAYER BINARY NOISY-OR NETWORKS
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But there is a trick...

e The Quickscore Algorithm
(Heckerman 1989) computes
P(f) in time exponential in
number of positive findings
with multiple parents.

e The trick is that negative
findings and positive findings
with only one parent can be
absorbed into the prior.

o Still, with 100 observations
we would still have to sum
over 210 configurations.




APPROXIMATE INFERENCE

e Even with the quickscore trick, exact inference is often intractable
in networks as large as QMR-DT.

e So practitioners resort to approximate inference methods which
attempt to estimate the marginals p(d.|f) rather than computing
them exactly.

e This is a large and complex area of research, but essential to
making QMR a practical diagnosis system.

DISCRETE SEQUENCES IN COMPUTATIONAL BIOLOGY

e There has recently been a great interest in applying probabilistic
models to analyzing discrete sequence data in molecular and
computational biology.

® There are two major sources of such data:
—amino acid sequences for protein analysis
— base-pair sequences for genetic analysis

e The sequences are sometimes annotated by other labels, e.g.
species, mutation/disease type, gender, race, etc.

e Lots of interesting applications:

—whole genome shotgun sequence fragment assembly
—multiple alignment of conserved sequences

— splice site detection

—inferring phylogenetic trees

QMR-DT OBSERVATION PROCESS

o Other issues: there should be a distinction between unobserved
manifestations and observed negative manifestations.

e Observation is not independent of result: doctor’s do the tests they
expect will give them important info.

e Modeling this observation process is key to using QMR in practice
(see work of Quaid Morris).
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MAIN TooL: HIDDEN MARKOV MODELS

e HMMs and related models (e.g. profile HMMs) have been the
major tool used in biological sequence analysis and alignment.

® The basic dynamic programming algorithms can be improved in
special cases to make them more efficient in time or memory.

Biological
sequence
analysis

Probabilistic models
of proteins and
nucleic acids

See the excellent book by Durbin, S cddy

Eddy, Krogh, Mitchison for lots of G Mitchison
practical details on applications and

implementations.




ProriLE HMMSs

FOR MULTIPLE ALIGNMENT
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MICROARRAY DATA

MICROARRAY DATA

e A final source of clinical data now gaining attention for analysis by
probabilistic graphical models is data generated from DNA
microarry experiments.

e A “DNA chip” is manufactured with several banks of “probe
sequences’ attached to the surface in known location.

e A test solution is washed over the chip, and species in the test
solution having a high affinity with the probe sequences are more
likely to bind to the probes, or stay bound for longer.

e This binding is measured using optical flourescence or electrical
conductivity signals, giving a signal which tells us how “similar” the
probe sequence was to some subsequences in the test solution.

e By repeating this experiment over multiple test solutions
representing different mutants or individuals we can generate an
enormous quantity of continuous measurement data.

ANALYSIS OF MICROARRAY DATA

e The continuous measurements from the microarrays can be

analyzed using many of the models we have studied, e.g.
—factor analysis

— mixture models for clustering

— classification with naive bayes or logistic regression

experiments

probes




PROFILE (STRING-EDIT) HMMSs

i =insert d = delete m = match (state transition diagram)

e A "profile HMM" or “string-edit” HMM is used for probabilistically
matching an observed input string to a stored template pattern
with possible insertions and deletions.

e Three kinds of states: match, insert, delete.
m; — use position j in the template to match an observed symbol
ij — insert extra symbol(s) observations after template position j
dj — delete (skip) template position j




