LECTURE 21:

JUNCTION TREE DERIVATION OF HMM INFERENCE

Sam Roweis

March 19, 2004

HMM JuNCTION TREE

o Cliques of moralized-triangulated: (q¢, q;+1) and (q¢, y¢).-

e Many maximal spanning trees, so many junction trees.
For standard algorithms, select this one:

(9o Yo) (qo’) (% 9 (Or.1, 9y)

O

(4 Y%) (%)) (G Y1)

e Other spanning trees lead to other algorithms.

HMM GRAPHICAL MODEL

e Hidden states g4, observations y;.
e Transition parameters: p(qi11 = jlqt = Z) = Sjj
o Output parameters p(ytlgr = j = Aj(

??ififf@@

@ (b)
e Moralization easy: each node has a single parent.

e Triangulation easy: moralized graph has no cycles.

CLIQUES AND POTENTIALS

e The junction tree with potentials and cliques looks like this:
W(dg: o) $(d,.9;) W(a;.9,) (A1 A7)

4Ch

LAY W(9;.Y,) v@r.¥y)

e Initialization:

¥(q0, ¥0) = p(q0)p(yolgo) = mgyAgy(¥0)
V(at qr41) = Plas1llar) = Sgpq
V(g yt) = p(ytlar) = Ag(yt)
o) =1
£()=1

MESSAGE PASSING (NO EVIDENCE)

MESSAGE PASSING WITH EVIDENCE — COLLECT

e Select (¢7_1, qr) as the root.

e COLLECTEVIDENCE(root) generates:
observation messages upwards from (q¢,y¢) to (g;—1,q¢); and
backbone messages from (q¢—1,q¢) to (qt, Gs+1)-

e DISTRIBUTEEVIDENCE(root) generates:
correction messages downwards from (g¢;—1, ¢¢) to (g, y¢); and
backwards from (gt, q¢11) to (g1, t)-

6@y Y% gq.,) ¢(a) XTI
D —d —d D P P D -~ -~ D
* ﬁ *
{(0) (@)
V(G Yoor) W (G Yoor)

e First set the 1) potentials to introduce evidence:
lae yi) = Agd(yt — yi)-
e Now run COLLECT:

- Marginalizing gives zyt¢(Qt>Yt) =Agu(Ft). e
Thus, separator £*(q¢) = p(y¢t|gt) for fixed yy.

. t
U%)

- Consider update factors passed to (g, qri1):

Vg, qr+1) = V(e @+1) 0" (@) (qi1)-
V*(at, q41) = Sqpqr @ (@) P(Yi1]q41)-

- Initialize with ¢*(q9) = p(yolao)p(qo)-
- Now we can continue along the chain:

O™ (1) = 2og V(@ @t1) = Dg, Sarara @ (@) P(ev1lae1)

e Notice: ¢*(qt) = oy = p(Y()v qt)
We have recovered the « recursion automatically.

WG V)

e After collect, how do we comput L = p(Y)?

MESSAGE PASSING (NO EVIDENCE)

e Upwards messages: Zytw(qt,yt) = Zytp(yﬂqt) = 1 so the
separator potential £*(¢;) = 1 is unchanged by marginalization.

e Upwards messages have no effect when no evidence is observed.

e Backbone messages: ¢*(qg) = Zy() (q0,¥0) = P(qo)
V*(q0, ¢1) = ¥(q0, 01)9*(q0) = Plqo, q1) etc...

o All backbone potentials get converted to marginals in COLLECT
phase. Backwards DISTRIBUTE phase has no effect on ¢.

e DISTRIBUTE converts £(q;) into marginal P(g;) and 9(q, y¢) into
marginals P(gt,yt). No effect on ¢(q q41).

(5(ql) W(%: Gy)

O(0hsy) Gy Y@ %) gg,y

-~

V) NG

CHECK OF ¢*

o Check that ¢*(q;) = P(y}, qt)-

e Initially, ¢*(q0) = p(¥0la0)p(q0)-
e By induction:

¢*(qr+1) qut,qmas (a)P(yesilgrs1)
—ZP (@r+1lat) P(yh, @) P(yis1lai41)

= Z P(yb, ye+1, @t Q1)
qt

= P(t+17QT+1)

o After collect, ¥*(qt—1, q) = p(¥h, qt—1, @)

MESSAGE PASSING WITH EVIDENCE — DISTRIBUTE

e The DISTRIBUTE call generates backwards updates:
¢ (gt+1)

V(@ %)

Vg, ge1) = VN a @1) e e

. ¢*(Qt+1)
o () = 3 LU D) e

Qi1 ¢*(qt41)

o _ V*(at, qr41) *%
¢ (ar) —qtzﬂzqt M)’ (t+1)

o Now, ¢**(q1) = Lyt = plai, y{). No beta!
o After distribute, ¥**(q;—1, q) = p(yL , q1—1, a)-

MESSAGE PASSING — NO EVIDENCE

e Consider the case when no observations have been made.

e Marginalizing gives ZYt@ZJ(qt,yt) = 1 so separator {*(q;) does not
change. Thus, update factor passed to (g¢—1, gt) is unity and

¥(q—1,qt) is also unchanged.
Leaf messages do nothing when no evidence.

e Subsequent distribute pass does not change backbone, but will
convert £(q¢) into marginals p(q;) and potentials ¥ (g¢, y¢) into
marginals p(qs, y¢).

e Why would you ever want to do this?

- tells you about generative behaviour
- can help numerical scaling of algorithms

RECURSIONS

e The basic COLLECT-DISTRIBUTE messages allow us to generate
a variety of recursions.

e We chose ¢™(gt) and ¢**(g¢) which gave the alpha-gamma
recursions for HMM inference.

e Using root (g, q1) gives beta recursions instead of alpha.

e A recursion on the update factors ¢**(q;)/$*(qt) gives the
alpha-beta algorithm.

e Recursions on ¥*(q;—1,q¢) and ¥**(q;_1, q¢) directly gives a new
algorithm known as rho-xi.

