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BAUM-WELCH ALGORITHM: EM TRAINING

1. Intuition: if only we knew the true state path then ML parameter

estimation would be trivial (MM1 on z, conditional on y).

2. But: can estimate state path using inference recursions.

3. Baum-Welch algorithm (special case of EM): estimate the states,

then compute params, then re-estimate states, and so on ...

4. This works and we can prove that it always improves likelihood.

5. However: finding the ML parameters is NP complete, so initial

conditions matter a lot and convergence is hard to tell.
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REMINDER: HMM GRAPHICAL MODEL

e Hidden states {z:}, outputs {y:}
Joint probability factorizes:
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e We saw efficient recursions for computing

L =P{y}) = X1z Pz}, {y}) and 7;(t) = P(z¢ = i[{y}).

PARAMETER ESTIMATION USING EM

e S;; are transition probs; state j has output distribution A;(y)
Pt =jlry=1i)=5;;  Play=j)=m;
Plyt = ylot = j) = Aj(y)
e Complete log likelihood:
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where the indicator [z}] = 1 if 2; = i and 0 otherwise

e For EM, we need to compute the expected complete log likelihood.




STATE EXPECTATIONS REQUIRED FROM THE E-STEP

e The expected complete log likelihood requires
’72( ) [‘(Et} > and gly(t) =< [x;lfvxg_pl] >

e So in the E-step we need to compute both
Yi(t) = p(zr = il{y}) and &;;(t) = p(zt = i, 7041 = j{y})-

e We already know how to compute 7;(t) using « and 3 recursions.
We can compute &; ;() the same way (recall BP):
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HMM PRACTICALITIES
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e Multiple observation sequences: can be dealt with by averaging
numerators and averaging denominators in the ratios given above.

e Initialization: mixtures of Naive Bayes or mixtures of Gaussians

e Numerical scaling: the probability values that the bugs carry get
tiny for big times and so can easily underflow. Good rescaling trick:

Pt = P()’tb’i_l) a(t) = af(t) H Pt

or represent all probabilities as logs and use logsum

M-sTEP: NEW PARAMETERS ARE JUST
RATIOS OF FREQUENCY COUNTS

M-sTEP FOR PROFILE HMMSs

e Initial state distribution: expected #times in state ¢ at time 1:
T = (1)
o Expected #transitions from state i to j which begin at time ¢:
gij(t) = O‘L( )SL]A](Yt+1)6j(t + 1)/L
so the estimated transition probabilities are:
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e The output distributions are the expected number of times we
observe a particular symbol in a particular state:

T
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e The emission probabilities A ;() for match and insert states and the
initial state distribution 7 (for mi,i1,d;) are updated exactly as in
the regular M-step.

o The expected #transitions from state ¢ to j which begin at time ¢
are different when j is a delete state:

§ij(t) = a;(t)Si;05(t) /L

e Given this change, the updates to the transition parameters is the
same as in the normal M-step.




SymMBoL HMM EXAMPLE

e Character sequences (discrete outputs)

MixTurRE HMM EXAMPLE

e Geyser data (continuous outputs)
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