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Reminder: HMM Graphical Model
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• Hidden states {xt}, outputs {yt}
Joint probability factorizes:

P({x}, {y}) =
T
∏
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• We saw efficient recursions for computing
L = P({y}) =

∑

{x} P({x}, {y}) and γi(t) = P(xt = i|{y}).

Baum-Welch Algorithm: EM Training

1. Intuition: if only we knew the true state path then ML parameter
estimation would be trivial (MM1 on x, conditional on y).

2. But: can estimate state path using inference recursions.

3. Baum-Welch algorithm (special case of EM): estimate the states,
then compute params, then re-estimate states, and so on . . .

4. This works and we can prove that it always improves likelihood.

5. However: finding the ML parameters is NP complete, so initial
conditions matter a lot and convergence is hard to tell.
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Parameter Estimation using EM

• Sij are transition probs; state j has output distribution Aj(y)

P(xt+1 = j|xt = i) = Sij P(x1 = j) = πj

P(yt = y|xt = j) = Aj(y)

• Complete log likelihood:
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where the indicator [xi
t] = 1 if xt = i and 0 otherwise

• For EM, we need to compute the expected complete log likelihood.



State expectations required from the E-Step

• The expected complete log likelihood requires

γi(t) =< [xi
t] > and ξij(t) =< [xi

t, x
j
t+1] >

• So in the E-step we need to compute both
γi(t) = p(xt = i|{y}) and ξij(t) = p(xt = i, xt+1 = j|{y}).

• We already know how to compute γi(t) using α and β recursions.
We can compute ξij(t) the same way (recall BP):

ξij(t) = p(xit, xjt+|{y}) = p(xit|{y})p(xjt+|xit, {y})

= p(xit, y
t
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= αi(t)Aj(yt+1)Sijβj(t + 1)/L

M-step: New Parameters are just

Ratios of Frequency Counts

• Initial state distribution: expected #times in state i at time 1:

π̂i = γi(1)

• Expected #transitions from state i to j which begin at time t:

ξij(t) = αi(t)SijAj(yt+1)βj(t + 1)/L

so the estimated transition probabilities are:

Ŝij =
T−1
∑

t=1

ξij(t)

/

T−1
∑
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γi(t)

• The output distributions are the expected number of times we
observe a particular symbol in a particular state:

Âj(y0) =
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γj(t)
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HMM Practicalities

• Multiple observation sequences: can be dealt with by averaging
numerators and averaging denominators in the ratios given above.

• Initialization: mixtures of Naive Bayes or mixtures of Gaussians

• Numerical scaling: the probability values that the bugs carry get
tiny for big times and so can easily underflow. Good rescaling trick:

ρt = P(yt|y
t−1

1
) α(t) = α̃(t)

t
∏

t′=1

ρt′

or represent all probabilities as logs and use logsum

M-step for Profile HMMs

• The emission probabilities Aj() for match and insert states and the
initial state distribution π (for m1, i1, d1) are updated exactly as in
the regular M-step.

• The expected #transitions from state i to j which begin at time t
are different when j is a delete state:

ξij(t) = αi(t)Sijβj(t)/L

• Given this change, the updates to the transition parameters is the
same as in the normal M-step.



Symbol HMM Example

• Character sequences (discrete outputs)
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Mixture HMM Example

• Geyser data (continuous outputs)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
40

50

60

70

80

90

100

110

y1

y2

State output functions


