
CSC412 – Assignment #2

Due: Feb6, 10am at the START of class
Worth: 15%

Late assignments not accepted.

1 Gamma Distribution

The gamma distribution is a distribution on positive real values 0 < x <∞. It has the form:

p(x) =
1

sG(c)

(x
s

)c−1

exp
{
−x
s

}
G(c) is a function that makes the distribution normalize properly; s, c > 0 are positive scale and shape parameters.

• Write this distribution in the exponential family form.

• What are the sufficient statistics of a dataset D = {x1, x2, . . . , xM} for the gamma distribution?

• Write down the log-liklihood function `(s, c;D) = log p(x1, x2, . . . , xM |s, c) in terms of the parameters (s; c),
the sufficient statistics of D, and the function G(c).

• For a fixed parameter s∗, find the maximum likelihood estimate c∗ in terms of the sufficient statistics and s∗.

2 Flipping Coins

• Write a Matlab program or script that simulates measuring a biased coin which is flipped M times.

1. For p(heads)=θ and p(tails)=(1− θ), simulate M iid coin tosses.

2. Based on these M tosses, compute the maximum likelihood estimate θ∗ of the bias.

• For each of the four cases below, repeat the above process 5000 times, and plot a histogram of the 5000 estimates
θ∗1 , θ

∗
2 , . . . , θ

∗
5000 you generate. (See the function hist.) Also report the mean of the estimates.

(Do not hand in code. Do not fix the random seed in Matlab . Use 100 bins in your histogram.)
a) θ = .5,M = 10 b) θ = .5,M = 250 c) θ = .9,M = 10 d) θ = .2,M = 250

• Hint: if you are clever, you can do this whole thing in a few lines, without any for loops.
Consider generating a 5000 by M matrix using the rand function.
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3 Class-Conditional Gaussians

In this question, you’ll derive for yourself the maximum likelihood estimates for class-conditional Gaussians with
independent features (spherical covariance matrices). Start with the following generative model for a discrete class
label y ∈ (1, 2, . . . ,K) and a real valued vector of N features x = (x1, x2, . . . , xN ):

p(y = k) = αk

p(x|y = k) = (2πσ2)−N/2 exp

{
− 1

2σ2

N∑
n=1

(xn − µkn)2

}

where αk is the prior on class k, σ2 is the shared variance for all features in all classes, and µkn is the mean of the
feature n conditioned on class k.

• Use Bayes’ rule to invert the model above and write the expression for p(y = k|x).

• Write down the expression for the likelihood function `(θ;D) = log p(y1, x1, y2, x2, . . . , yM , xM |θ) of a particular
dataset D = {y1, x1, y2, x2, . . . , yM , xM} with parameters θ = {α, µ, σ2}.

• Take partial derivatives of the likelihood with respect to each of the parameters µnk and with respect to the
shared variance σ2. (Don’t worry about α.)

• Set these partial derivatives to zero and solve for the optimal (maximum likelihood) parameter values µnk and
σ2 for classification.

4 Handwritten Digit Classification

For this question you will build two classifiers to label images of handwritten digits collected by the United States
Post Office. The images x are 8 by 8 in size, which we will represent as a vector of dimension 64 by listing all the
pixel values in raster scan order. The labels y are 1, 2, . . . , 9, 10 corresponding to which character was written in the
image. Label 10 is used for the digit “0”. There are 700 training cases and 400 test cases for each digit; they can be
found in the file a2digits.mat. Before we start, here are some Matlab tips:

• The imagesc function can be used to display vectors as images. In particular, try the line:
imagesc(reshape(xx,8,8)’); axis equal; axis off; colormap gray;
to display the vector xx. The subplot command is useful for displaying many small images beside each other.

• The repmat command in conjunction with sum and the operators .* and ./ are helpful in renormalizing arrays
so that the rows or columns sum to one.

• The expression (M > a) for a matrix M and a scalar a performs the comparison at every element and evaluates
to a binary matrix the same size as M.

4.1 Conditional Gaussian Classifier Training

• Using maximum likelihood, fit a set of 10 class-conditional Gaussians with a single, spherical covariance σ2I
shared between them to the training data. (This is the same model as in the previous question.)

p(y = k) = αk

p(x|y = k) = (2πσ2)−N/2 exp

{
− 1

2σ2

N∑
n=1

(xn − µkn)2

}

• You should get parameters µkn for k ∈ (0 . . . 9), n ∈ (1 . . . 64) and σ2.
(You can assume αk=1/10 since all classes have the same number of observations.)

• Hand in plot showing an 8 by 8 image of each mean µk, all ten means side by side (try using subplot).
Also write somewhere on the plot the value of σ, the pixel noise standard deviation.
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4.2 Naive Bayes Classifier Training

• Convert the real-valued features x into binary features b by thresholding: bn=1 if xn > 0.5 otherwise bn = 0.

• Using these new binary features b and the class labels, train a Naive Bayes classifier on the training set:

p(y = k) = αk

p(bn = 1|y = k) = ηkn

p(b|y = k, η) =
∏
n

η
[bn=1]
nk (1− ηnk)[bn=0]

• You should get parameters ηkn ≡ p(bn = 1|y = k) for k ∈ (0 . . . 9), n ∈ (1 . . . 64).
(You can assume all class priors are equal since all classes have the same number of observations.)

• Hand in plot showing an 8 by 8 image of each vector ηk, all ten side by side (try using subplot).

4.3 Test Performance

• Using the parameters you fit on the training set compute p(y|x) for each of the test cases under
both Naive Bayes and Gaussian-conditionals.

• Hand in a 3 by 7 plot showing the image of the test case, the histogram of p(y|x) under Naive Bayes, and the
histogram of p(y|x) under Gaussian-conditionals for the following seven test cases:
(digit2,case#3),(digit3,case#14), (digit5,case#242),(digit6,case#112),
(digit7,case#364),(digit9,case#319),(digit0,case#72).

• Select the most likely class for each test case under each classifier. If this matches the label, the classifier is
correct. If not, the classifier has made an error. Hand in a 2 by 11 table showing how many errors (out of 400)
each classifier makes on each of the 10 test sets and what the overall error rate (in %) is.
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