
CSC310 – Information Theory Sam Roweis

Lecture 9:

Adaptive Probability Models

October 11, 2006

Where Do the Probabilities Come From? 1

• In order for coding be efficient (close to optimal) we need a good
probabilistic source model of our messages.

• In order for coding to work correctly, the transmitter and the
receiver must both assume the same probabilities.

• So far, we’ve assumed that we “just know” the probabilities of the
symbols, p1, . . . , pI , both at encoding and deocding time.

•This isn’t realistic.

For instance, if we’re compressing black-and-white images, there’s
no reason to think we know beforehand the fraction of pixels in the
transmitted image that are black.

•But could we make a good guess?

That might be better than just assuming equal probabilities. Most
fax images are largely white, for instance. Guessing P (White) = 0.9
may usually be better than P (White) = 0.5.

The Penalty for Guessing Wrong. 2

• Suppose we use a code that would be optimal if the symbol
probabilities were q1, . . . , qI , but the real probabilities are
p1, . . . , pI . How much does this cost us?

• Assume we use large blocks or use arithmetic coding — so that the
code gets down to the entropy, given the assumed probabilities.

•We can compute the difference in expected code length between an
optimal code based on q1, . . . , qI and an optimal code based on the
real probabilities, p1, . . . , pI , as follows:

I∑

i=1

pi log(1/qi) −
I∑

i=1

pi log(1/pi) =

I∑

i=1

pi log(pi/qi)

• This is the relative entropy of {pi} and {qi}.
It can never be negative. (See Section 2.6 of MacKay’s book.)

Why Not Estimate the Probabilities
And Then Send Them With the Data? 3

•One way to handle unknown probabilities is
to have the transmitter estimate them, and then send these
probabilities along with the compressed data, so that the receiver
can uncompress the data correctly.

• Example: We might estimate the probabilitiy that a pixel in a
black-and-white image is black by the fraction of pixels in the
image we’re sending that are black.

•One problem: We need some code for sending the estimated
probabilities. How do we decide on that? We need to guess the
probabilities for the different probabilities...



Why This Can’t be Optimal 4

• This scheme may sometimes be a pragmatic solution, but it can’t
possibly be optimal, because the resulting code isn’t complete.

• In a complete code, all sequences of code bits are possible (up to
when the end of message is reached). A prefix code will not be
complete if some nodes in its tree have only one child.

• Suppose we send a 3-by-5 black-and-white image by first sending
the number of black pixels (0 to 15) and then the 15 pixels
themselves, as one block, using probabilities estimated from the
count sent.

• Some messages will not be possible, eg:

4 ◦ • • ◦ ◦
• • • • ◦
◦ ◦ • • •

This can’t happen, since the count of 4 is inconsistent with the
image that follows.

Idea: Adaptive Models Based on History So Far 5

•We can do better using an adaptive model,
which continually re-estimates probabilities using counts of symbols
in the earlier part of the message.

•We need to avoid giving any symbol zero probability, since its
“optimal” codeword length would then be log(1/0) = ∞.
One “kludge”: Just add one to all the counts.

• This is actually one of the methods that can be justified by the
statistical theory of Bayesian inference.

• Bayesian inference uses probability to represent uncertainty about
anything — not just which symbol will be sent next, but also what
the probabilities of the various symbols are.

Adapting Probabilities During Encoding 6

• Example:

We might encode the 107th pixel in a black-and-white image using
the count of how many of the previous 106 pixels are black.

• If 13 of these 106 pixels were black, we encode the 107th pixel using

P (Black) = (13 + 1)/(106 + 2) = 0.1308

• Changing probabilities like this is easy with arithmetic coding,
during encoding we simply subdivide the intervals according to the
current probabilities. During decoding we can recover these
probabilities as we reconstruct the symbols and so we can do the
same thing.

• This adaptive scheme is much harder to do with Huffman codes,
especially if we encode blocks of symbols.

Any Adaptive Model Assigns Probabilities
to Sequences of Symbols 7

• Any way of producing predictive probabilities for each symbol in
turn will also assign a probability to every sequence of symbols.

•We just multiply together the predictive probabilities as we go.

• For example, the string ”CAT.” has probability

P (X1 = ‘C’)

× P (X2 = ‘A’ |X1 = ‘C’)

× P (X3 = ‘T’ |X1 = ‘C’, X2 = ‘A’)

× P (X4 = ‘.’ |X1 = ‘C’, X2 = ‘A’, X3 = ‘T’)

where the probabilities above are the ones used to code each
individual symbol.

•With an optimal coding method, the number of bits used to encode
the entire sequence will be close to the log of one over its
probability.



Probabilities of Sequences w/ Laplace Model 8

• The general form of the “add one to all the counts” method uses
the following predictive distributions:

P (Xn = ai) =
1 + Number of earlier occurrences of ai

I + n − 1
where I is the size of the source alphabet.
This is called “Laplace’s Rule of Succession”.

• So the probability of a sequence of n symbols is

(I − 1)!

(I + n − 1)!

I∏

i=1

ni!

where ni is the number of times ai occurs in the sequence.

• It’s much easier to code one symbol at a time (using arithmetic
coding) than to encode a whole sequence at once, but we can see
from this what the model is really saying about which sequences are
more likely.

Models With Multiple Contexts 9

• So far, we’ve looked at models in which the symbols would be
independent, if we knew what their probabilities were.

• If we don’t know the probabilities, our predictions do depend on
previous symbols, but the symbols are still “exchangeable”
— their order doesn’t matter.

• Very often, this isn’t right: The probability of a symbol may depend
on the context in which it occurs — eg, what symbol precedes it.

• Example: “U” is much more likely after “Q” (in English), than
after another “U”. Probabilities may also depend on position in the
file, though modeling this is less common.

• Example: Executable program files may have machine instructions
at the beginning, and symbols to help with debugging at the end.

Markov Sources 10

• An K-th order Markov source is one in which the probability of a
symbol depends on the preceding K symbols.

•We can write the probability of a sequence of symbols,
X1, X2, . . . , Xn from such a source with K = 2 as follows
(assuming we know all the probabilities):

P (X1 = ai1, X2 = ai2, . . . , Xn = ain)

= P (X1 = ai1) × P (X2 = ai2 | X1 = ai1)

× P (X3 = ai3 | X1 = ai1, X2 = ai2)

× P (X4 = ai4 | X2 = ai2, X3 = ai3)

. . . × P (Xn = ain | Xn−2 = ain−2
, Xn−1 = ain−1

)

= P (X1 = ai1) × P (X2 = ai2 | X1 = ai1)

× M (i1, i2, i3)M (i2, i3, i4) · · ·M (in−2, in−1, in)

• Here, M (i, j, k) is the probability of symbol ak when the preceding
two symbols were ai and aj.

Adaptive Markov Models 11

• Some sources may really be Markov of some order K, but usually
not. We can nevertheless use a Markov model for a source as the
basis for data compression.

• Usually, we don’t know the “transition probabilities”, so we
estimate them adaptively, using past frequencies, as before.

• Eg, for K = 2, we accumulate frequencies in each context,
F (i, j, k), and then use probabilities

M (i, j, k) = F (i, j, k)/
∑

k′

F (i, j, k′)

• After encoding symbol ak in context ai, aj, we increment F (i, j, k).

• A K-th order Markov model has to handle the first K−1 symbols
differently. One approach: Imagine that there are K symbols
before the beginning with some special value (eg, space).



Adaptive Markov Models Applied to English Text 12

• Adaptive Markov models of order 0, 1, and 2, using arithmetic
coding, applied to three English text files (Latex), of varying sizes.

Markov Model of Order 0

Uncompressed Compressed Compression Bits per

file size file size factor character

2344 1431 1.64 4.88

20192 12055 1.67 4.78

235215 137284 1.71 4.67

Markov Model of Order 1

Uncompressed Compressed Compression Bits per

file size file size factor character

2344 1750 1.34 5.97

20192 11490 1.76 4.55

235215 114494 2.05 3.89

Markov Model of Order 2

Uncompressed Compressed Compression Bits per

file size file size factor character

2344 2061 1.14 7.03

20192 13379 1.51 5.30

235215 111408 2.11 3.79

How Large an Order Should be Used? 13

•We can see a problem with these results. A Markov model of high
order works well with long files, in which most of the characters are
encoded after good statistics have been gathered.

• But for small files, high-order models don’t work well — most
characters occur in contexts that have occurred only a few times
before, or never before. For the smallest file, the zero-order model
with only one context was best, even though we know that English
has strong dependencies between characters!

•We would like to get both the advantages of:

– fast learning of a low-order model

– ultimately better prediction of a high-order model

•We can do this by varying the order we use.

•One scheme for this is the “prediction by partial match” (PPM)
model.


