
CSC310 – Information Theory Sam Roweis

Lecture 8:

Arithmetic Coding – Practical Details

October 4, 2006

Reminder: Arithmetic Coding 1

• Represent a symbol sequence as a subinterval of [0, 1) by recursively
dividing the interval according to the probability of the next symbol.

•We encode this subinterval by transmitting a binary fraction that
represents a number inside the interval, and for which any
continuation would still lie in the interval.

• To avoid the need for extremely high
numerical precision, we double the
size of the subinterval during encoding
whenever it is contained entirely
within [0, .5) or [.5, 1) or [.25, .75). If
we do exactly the same doubling
during decoding, we maintain

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

a

a a

a

a

0
Transmit

1
Transmit

1
Transmit

Received Received

1

a

4

2

3

3

1

4

2

1

24 a

a

a

a

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

1/2

0

����
����
����
����

����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

correctness, without exponential complexity.

• Stream codes: no need to consider all possible blocks.
Can implement using only fixed-point (scaled integer) arithmetic.

Arithmetic Coding Without Blocks (ver 1.1) 2

1) Initialize the interval [u, v) to u = 0 and v = 1.
Initialize the “opposite bit count” to c = 0.

2) For each source symbol, ai, in turn:
Compute r = v − u.

Let u = u + r
i−1
∑

j=1

pj. Let v = u + rpi.

While u ≥ 1/2 or v ≤ 1/2 or u ≥ 1/4 and v ≤ 3/4:
If u ≥ 1/2:

Transmit a 1 bit followed by c 0 bits. Set c to 0.
Let u = 2(u−1/2) and v = 2(v−1/2).

If v ≤ 1/2:
Transmit a 0 bit followed by c 1 bits. Set c to 0.
Let u = 2u and v = 2v.

If u ≥ 1/4 and v ≤ 3/4:
Set c to c + 1.
Let u = 2(u−1/4) and v = 2(v−1/4).

3) Transmit enough final bits to specify a number in [u, v).

Precision of the Coding Interval 3

• Last class we recognized that since we are always expanding the
coding interval to keep its size ≥ 1/4 we only need a finite amount
of precision to represent it.

•We proposed using fixed point arithmetic since it is faster and
better defined on most machines.

• Thus, the ends of the coding interval will be represented by m-bit
integers. The integer bounds u and v represent the interval

[

u× 2−m, (v+1)× 2−m)

(The addition of 1 to v allows the upper bound to be 1 without the
need to use m+1 bits to represent v.)

• The received message will also be represented as an m-bit integer,
t, (which at any point does not include further bits not yet read).

•With these representations, the arithmetic performed will never
produce a result bigger than m bits + precision of probabilities.



Precision of the Symbol Probabilities 4

•Of course in any practical implementation, our symbol probabilities
must also have some finite precision. This is fine, since small errors
in these probabilities may reduce the coding efficiency very slightly
but they won’t affect the correctness of the encoder/decoder.

• The most common way to represent the symbol probabilities is as
rational fractions with large denominators (to give reasonable
accuracy).

• This is convenient, since we usually estimate the source
probabilities for symbols a1, . . . , ai using counts fi > 0:

pi = fi /
I
∑

j=1
fj

• For example, these counts might come from examining the file we
are about to compress or from a buffer of past messages.

Cumulative Symbol Probabilities 5

• For arithmetic coding, it’s convenient to pre-compute the
cumulative probabilities:

Fi =
i

∑

j=1
pj

We define F0 = 0. Obviously FI = 1.

•We will assume that these cumulative probabilities Fi are
represented using h bits of precision (either floating point or scaled
fixed-point).

Encoding Using Integer Arithmetic 6

u← 0, v ← (2m − 1), c← 0
For each source symbol, ai, in turn:

r ← (double)(v − u) + 1.0
v ← u + ⌊r ∗ Fi⌋ − 1
u← u + ⌊r ∗ Fi−1⌋
While u ≥ 2m/2 or v < 2m/2 or (u ≥ 2m/4 and v < 2m ∗ 3/4):

If u ≥ 2m/2:
Transmit a 1 bit followed by c 0 bits
c← 0
u← 2 ∗ (u− 2m/2), v ← 2 ∗ (v − 2m/2) + 1

If v < 2m/2:
Transmit a 0 bit followed by c 1 bits
c← 0
u← 2 ∗ u, v ← 2 ∗ v + 1

If u ≥ 2m/4 and v < 2m ∗ 3/4:
c← c + 1
u← 2 ∗ (u− 2m/4), v ← 2 ∗ (v − 2m/4) + 1

Transmit a few final bits to specify a point in the interval:
If u < 2m/4: Transmit a 0 bit followed by (c + 1) 1 bits.
Else: Transmit a 1 bit followed by (c + 1) 0 bits.

Decoding Using Integer Arithmetic 7

u← 0, v ← 2m − 1, t← first m bits of the received message (pad with zeros if

Until last symbol decoded: total message bits < m)

r ← (double)(v − u) + 1.0; w ← ((double)(t− u) + 1.0) / r

Find i such that Fi−1 ≤ w < Fi; Output ai as the next decoded symbol

v ← u + ⌊r ∗ Fi⌋ − 1
u← u + ⌊r ∗ Fi−1⌋

While u ≥ 2m/2 or v < 2m/2 or u ≥ 2m/4 and v < 2m ∗ 3/4:

If u ≥ 2m/2:

u← 2 ∗ (u− 2m/2), v ← 2 ∗ (v − 2m/2) + 1

t← 2∗(t−2m/2) + next message bit (set bit=0 if no more bits in message)

If v < 2m/2:

u← 2 ∗ u, v ← 2 ∗ v + 1
t← 2 ∗ t + next message bit (set bit=0 if no more bits in message)

If u ≥ 2m/4 and v < 2m ∗ 3/4:

u← 2 ∗ (u− 2m/4), v ← 2 ∗ (v − 2m/4) + 1
t← 2∗(t−2m/4) + next message bit (set bit=0 if no more bits in message)



How Much Precision is Required? 8

• For this procedure to work properly, the loop that expands the
interval must terminate. This requires that the interval never shrink
to nothing — ie, we must always have v ≥ u.

• This will be guaranteed as long as

⌊r ∗ Fi⌋ > ⌊r ∗ Fi−1⌋

which holds if fi ≥ 1 (so that Fi ≥ Fi−1 + 2−h) and r ≥ 2h.

• The expansion of the interval guarantees that r ≥ 2m/4 + 1.

• So the procedure will work as long as 2h ≤ 2m/4 + 1, or in other
words as long as m ≥ h + 2. We need to use at least as much
precision (plus two bits more) to store our interval endpoints u, v as
we use to store the (cumulative) symbol probabilities Fi.

• To obtain near-optimal coding, h may have to be relatively large,
which will force us to use a large m as well.

Proving That the Decoder Finds the Right Symbol 9

• To show this, we need to show that if

Fi−1 ≤ ((double)(t− u) + 1.0)/r < Fi

then
u + ⌊r ∗ Fi−1⌋ ≤ t ≤ u + ⌊r ∗ Fi⌋ − 1

• This can be proved as follows:

Fi > (t− u + 1.0)/r

⇒ r ∗ Fi > t− u + 1

⇒ u + r ∗ Fi − 1 > t

⇒ u + ⌊r ∗ Fi⌋ − 1 ≥ t since t is integral

Fi−1 ≤ (t− u + 1.0)/r

⇒ r ∗ Fi−1 ≤ t− u + 1

⇒ u + r ∗ Fi−1 ≤ t + 1

⇒ u + r ∗ Fi−1 − 1 ≤ t

⇒ u + ⌊r ∗ Fi−1⌋ ≤ t since ⌊r ∗ Fi⌋ > ⌊r ∗ Fi−1⌋

Summary 10

• Arithmetic coding provides a practical way of encoding a source in
a very nearly optimal way.

• Faster arithmetic coding methods that avoid multiplies and divides
have been devised.

•However: It’s not necessarily the best solution to every problem.
Sometimes Huffman coding is faster and almost as good.
Other codes may also be useful.

• Arithmetic coding is particularly useful for adaptive codes, in which
probabilities constantly change. We just update the table of
cumulative frequencies as we go.

History of Arithmetic Coding 11

• Elias — around 1960.

Seen as a mathematical curiosity.

• Pasco, Rissanen – 1976.

The beginnings of practicality.

• Rissanen, Langdon, Rubin, Jones – 1979.

Fully practical methods.

• Langdon, Witten/Neal/Cleary — 1980’s.

Popularization.

•Many more... (eg, Moffat/Neal/Witten)

Further refinements to the method.



Where Do the Probabilities Come From? 12

• So far, we’ve assumed that we “just know” the probabilities of the
symbols, p1, . . . , pI .
Note: The transmitter and the receiver must both know the same

probabilities.

•This isn’t realistic.

For instance, if we’re compressing black-and-white images, there’s
no reason to think we know beforehand the fraction of pixels in the
transmitted image that are black.

•But could we make a good guess?

That might be better than just assuming equal probabilities. Most
fax images are largely white, for instance. Guessing P (White) = 0.9
may usually be better than P (White) = 0.5.

The Penalty for Guessing Wrong. 13

• Suppose we use a code that would be optimal if the symbol
probabilities were q1, . . . , qI , but the real probabilities are
p1, . . . , pI . How much does this cost us?

• Assume we use large blocks or use arithmetic coding — so that the
code gets down to the entropy, given the assumed probabilities.

•We can compute the difference in expected code length between an
optimal code based on q1, . . . , qI and an optimal code based on the
real probabilities, p1, . . . , pI , as follows:

I
∑

i=1

pi log(1/qi)−
I

∑

i=1

pi log(1/pi) =

I
∑

i=1

pi log(pi/qi)

• This is the relative entropy of {pi} and {qi}.
It can never be negative. (See Section 2.6 of MacKay’s book.)

Why Not Estimate the Probabilities
And Then Send Them With the Data? 14

•One way to handle unknown probabilities is
to have the transmitter estimate them, and then send these
probabilities along with the compressed data, so that the receiver
can uncompress the data correctly.

• Example: We might estimate the probabilitiy that a pixel in a
black-and-white image is black by the fraction of pixels in the
image we’re sending that are black.

•One problem: We need some code for sending the estimated
probabilities. How do we decide on that? We need to guess the
probabilities for the different probabilities...

Why This Can’t be Optimal 15

• This scheme may sometimes be a pragmatic solution, but it can’t
possibly be optimal, because the resulting code isn’t complete.

• In a complete code, all sequences of code bits are possible (up to
when the end of message is reached). A prefix code will not be
complete if some nodes in its tree have only one child.

• Suppose we send a 3-by-5 black-and-white image by first sending
the number of black pixels (0 to 15) and then the 15 pixels
themselves, as one block, using probabilities estimated from the
count sent.

• Some messages will not be possible, eg:

4 ◦ • • ◦ ◦
• • • • ◦
◦ ◦ • • •

This can’t happen, since the count of 4 is inconsistent with the
image that follows.


