
CSC310 – Information Theory Sam Roweis

Lecture 6:

Typical Sets and Hδ

September 27, 2006

Reminder: Block Codes for Achieving the Entropy 1

• Last class we proved that Huffman codes are the optimal single
symbol codes (plus a warning: top-down splitting does not work).

•We also proved Shannon’s first theorem by showing that if we
encode long enough blocks we can get the average per-symbol
entropy as close as we want to the entropy of the source.

•Our proof used Shannon-Fano or Huffman codes for blocks of N
symbols. These codes are instantaneously decodable symbols codes
of variable length (some blocks had codes longer than other
blocks), which are guaranteed to get within an additive constant
(one bit) of the entropy.

• There is another way to compress down to the entropy using long
blocks. It uses codes which cannot always be correctly decoded and
which are of fixed length (all blocks get codes of the same size).

Another Way to Compress Down to the Entropy 2

• Suppose we always encode N symbols into a block of exactly NR
bits (fixed length code).
Q: Can we do this in a way that is very likely to be decodable?

• A:Yes, for large values of N .
The Law of Large Numbers (LLN) tells us that the sequence of
symbols ai1, . . . , aiN , is very likely to be a “typical” one, for which

1

N
log2(1/(pi1pi2 · · · piN)) =

1

N

N
∑

j=1

log2(1/pij)

is very close to the expectation of log2(1/pi), which is the entropy,
H(X) =

∑

i
pi log2(1/pi). (See Section 4.3 of MacKay’s book.)

• So if we encode all the sequences in this typical set in a way that
can be decoded, the code will almost always be uniquely decodable.

How Big is the Typical Set? 3

• Let’s define “typical” sequences as ones where

(1/N) log2(1/(pi1 · · · piN)) ≤ H(X) + η/
√

N

The probability of any such typical sequence will satisfy

pi1 · · · piN ≥ 2−NH(X)−η
√

N

•We scale the margin allowed above H(X) as 1/
√

N since that’s
how the standard deviation of an average scales. The LLN
(Chebychev’s inequality) then tells us that most sequences will
satisfy this condition, for some large enough value of η.

• The total probability for all such sequences can’t be greater than
one, so the number of “typical” sequences can’t be greater than

2NH(X)+η
√

N

Encoding sequences in the typical set 4

• The number of “typical” sequences can’t be greater than

2NH(X)+η
√

N

•We will be able to encode these sequences in NR bits if
NR ≥ NH(X) + η

√
N . (Using any arbitrary/random code in

which we assign each typical sequence to one of the 2NR codes.)
If R > H(X), this will always be true if N is sufficiently large.

• How often will a sequence of length N fail to be in the typical set?
To answer this, we need to know how many sequences live in the
upper “tail” of the distribution of (1/N) log2(1/(pi1 · · · piN)).

•We can define Hδ(X
N) to be average codeword length needed for

the typical set to leave out only a fraction δ of possible sequences.
Formally, it is the logarithm of the minimum number of sequences
in the N th extension of X whose probabilities sum to at least 1− δ.

Example 5

• Example: Consider flipping a coin with pheads = 0.1.

• Here are the plots of δ vs. Hδ.

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

N=4

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

N=10

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

N=10
N=210
N=410
N=610
N=810

N=1010

• For large N , Hδ becomes almost independent of δ.

Another Statement of Shannon’s Theorem 6

• Let X be an ensemble with entropy H(X) = H bits.

• Given any ǫ > 0 and 0 < δ < 1, there exists a positive integer N0
such that for N > N0,

H − ǫ <
1

N
Hδ(X

N) < H + ǫ

• Both sides of the inequality are interesting. The first part tells us
that even if the probability of error δ is extremely small, the average
number of bits per symbol 1

NHδ(X
N) needed to specify a long

N -symbol string with vanishingly small error probability does not
have to exceed H + ǫ bits.

• In other words, we need to have only a tiny tolerance for error, and
the number of bits required drops significantly from H0(X) to
(H + ǫ).

Another Statement of Shannon’s Theorem 7

• Let X be an ensemble with entropy H(X) = H bits.

• Given any ǫ > 0 and 0 < δ < 1, there exists a positive integer N0
such that for N > N0,

H − ǫ <
1

N
Hδ(X

N) < H + ǫ

•What happens if we are yet more tolerant to compression errors?
The second part tells us that even if δ is very close to 1, so that
errors are made most of the time, the average number of bits per
symbol needed must still be at least H − ǫ bits.

• These two extremes tell us that regardless of our specific allowance
for error, the number of bits per symbol needed is essentially H
bits; no more and no less.

What if Error-Free Coding is Required? 8

• If we require error-free decoding (i.e. we cannot tolerate even a δ
probability of failure), we can always encode the “atypical” blocks
(sequences) by reserving one codeword (say the all-zeros bitstring)
as a prefix for those blocks and using any UD code after that.

• Since this will only occur a fraction δ of the time it won’t affect the
average length at all and so the arguments above are still valid.

An End and a Beginning 9

Shannon’s Noiseless Coding Theorem is mathematically satisfying.
From a practical point of view, though, we still have two problems:

• How can we compress data to nearly the entropy in practice? The
number of possible blocks of size N is IN — huge when N is large.
And N sometimes must be large to get close to the entropy by
encoding blocks of size N .
Solution: Instead of symbol codes or block codes, we will introduce a
more powerful set of codes called stream codes. The most important
example is known as arithmetic coding (coming next).

•Where do the symbol probabilities p1, . . . , pI come from? And are
symbols really independent, with known, constant probabilities? This
is the problem of source modeling.
Solution: adaptive methods, which update their estimates of the
source model as they encode more and more data.
(We’ll see these shortly.)

Another Look at Code Trees 10

• Any instantaneous code can be represented by a tree such as the
following, with subtrees for codewords circled:

0

1

00

01

10

11

000

001

010

011

100

101

110

111

NULL

Rather than concentrate on the codewords that head each subtree,
let’s concentrate on the leaves. . .

Viewing Codes as a Way of Dividing up ‘Codespace”11

• Here are the codetree leaves, divided up according to codeword:

010

011

100

101

110

111

Symbol a , Codeword 100

Symbol a , Codeword 101

Symbol a , Codeword 11

Symbol a , Codeword 01

2

3

4

001

000

If we view {000, 001, 010, 011, 100, 101, 110, 111} as an available
“codespace”, we see that this code divides it up so that symbol a1
gets 1/2 of it, symbols a2 and a3 get 1/8, and symbol a4 gets 1/4.

What About Other Divisions? 12

•We know that this code is optimal if the fraction of codespace
assigned to a symbol is equal to the symbol’s probability.

• But suppose the symbol probabilities were 3/8, 1/8, 1/8, 3/8.
We would then like to divide up codespace as follows:

010

011

100

101

110

111

Symbol a , probability 1/8

Symbol a , probability 1/8

Symbol a , probability 3/8

Symbol a , probability 3/8

1

2

3

4

001

000

• Unfortunately, these divisions don’t correspond to subtrees — so
there’s no prefix-free code like this.

Viewing the Codespace as the Interval [0,1) 13

• Even if we could solve the problem of how to generate codewords
corresponding arbitrary divisions of codespace, how can we handle
symbols with probabilities like 1/3, which aren’t multiples of 2−k?

• A solution: Consider the codespace to be the interval of real
numbers between 0 and 1. Example:

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

3

2Symbol a , probability 1/6

1

4Symbol a , probability 1/3

Symbol a , probability 1/6

Symbol a , probability 1/3

0

1

5/6

2/3

1/2

1/6

1/3

Key Concept: Encode Blocks by Subdiving Further14

• Consider the source with probabilities {1/3, 1/6, 1/6, 1/3}.
• Suppose we want to encode blocks of two symbols from this source.

We can do this by just subdividing the interval corresponding to the
first symbol in the block, in the same way as we subdivided the
original interval.

• Here’s, how we encode the block a4 a1:

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

Symbol a , probability 1/3

Symbol a , probability 1/6

Symbol a , probability 1/6

 = (2/3, 7/9)

a1

4

3

2

1

4 1

Symbol a , probability 1/3
Interval for a a

1

0

Encoding Large Blocks as Intervals 15

• A general scheme for encoding a block of N symbols, ai1, . . . , aiN

1) Initialize the interval to
[

u(0), v(0)
)

; u(0) = 0 and v(0) = 1.

2) For k = 1, . . . , N :

Let u(k) = u(k−1) +
(

v(k−1) − u(k−1)
) ik−1

∑

j=1
pj

Let v(k) = u(k) +
(

v(k−1) − u(k−1)
)

pik

3) Output a codeword that corresponds (somehow) to the final

interval,
[

u(N), v(N)
)

.

• This scheme is known as arithmetic coding, since codewords are
found using arithmetic operations on the probabilities.

