
CSC310 – Information Theory Sam Roweis

Lecture 4:

Entropy & Huffman Codes

September 20, 2006

Reminder: Searching for Optimal Codes 1

• Last class we saw how to construct an instantaneously decodable
code for any set of codeword lengths li satisfying

∑

i 2−li ≤ 1.

•We also saw that if
∑

i 2−li > 1, no uniquely decodable code exists
with those codeword lengths.

• If a source generates symbols X independently with probabilities
pi, the expected codeword length per symbol is L =

∑

i pili.

•Our goal is to look at the probabilities pi and design the codeword
lengths li to minimize L, while still ensuring that

∑

i 2−li ≤ 1.

•We say that a set of codeword lengths is optimal if no other lengths
satisfying

∑

i 2−li ≤ 1 have a smaller value of L =
∑

i pili.

Bounding the optimal L 2

• Let K =
∑

i 2−li. Assume K ≤ 1 (otherwise the code is not UD).

•We can find a lower bound on L in terms of the pi:
∑

i

pili ≥
∑

i

pi(li + log K)

=
∑

i

pi log(2liK)

=
∑

i

pi log

(

2liKpi

pi

)

=
∑

i

pi log
1

pi
+
∑

i

pi log(2liKpi)

∑

i

pili +
∑

i

pi log

(

1

2liKpi

)

≥
∑

i

pi log
1

pi

Bounding the optimal L 3

• Using the fact that log(x) ≤ α(x − 1) ∀x > 0, we can show that
the second term on the left is always negative:

∑

i

pi log

(

1

2liKpi

)

≤ α
∑

i

pi

(

1

2liKpi
− 1

)

= α
∑

i

1

2liK
− α

∑

i

pi

= α(1 − 1)

= 0

• Thus, we can show that

L =
∑

i

pili ≥
∑

i

pi log
1

pi
= H

Entropy 4

• The quantity H(X) =
∑

i pi log 1
pi

is called the entropy of the

distribution p(X = ai) = pi and is a fundamental quantity in the
study of information theory.

• It represents an absolute lower bound on the average per-symbol
codelength of any uniquely decodable code for a source p(X) with
symbol probabilities p(X = ai) = pi.

• The units of entropy depend on the base of the logarithm and tell
us how many symbols are in the encoding alphabet AZ .

• For log2 (our default), the units are “bits” (binary digits), and
Z ∈ {0, 1}. We could use another base, for example for log10, the
units would be decimal digits and Z ∈ {0 − 9}.

Intuitions about Entropy 5

• A plausible proposal:
The amount of information obtained when we learn that X =ai is
log2(1/pi) bits, where pi = P (X =ai). (Amount of surprise.)

• Example:
We learn which of 64 equally-likely possibilities has occurred. The
information content is log2(64) = 6 bits. This makes sense, since
we could encode the result using codewords that are all 6 bits long,
and we have no reason to favour one symbol over another by using
a code of varying length.

• The above information content pertains to a single value of the
random variable X. To find out how much information learning the
value of X conveys on average, we find the expected value of the
information content.

• For further intuitions about why this is a plausible measure of
information, see Section 4.1 of MacKay’s book.

Information, Entropy, and Codes 6

• How does this relate to designing codes for data compression?

• A vague idea: Since receipt of symbol ai conveys log2(1/pi) bits of
“information”, this symbol “ought” to be encoded using a
codeword with that many bits.

• A consequence: If this is done, then the expected codeword length
will be equal to the entropy:

∑I
i=1 pi log2(1/pi), which we know is

the best we could ever do.

• At first we might think that for an optimal code, the expected
codeword length ought to be equal to the entropy. But it’s easy to
see that this can’t always be so. Consider p0 = 0.1, p1 = 0.9, so
H = 0.469. But the optimal code for a symbol with only two
values obviously uses codewords 0 and 1, with expected length of 1.

• The problem is that log2(1/pi) isn’t always an integer!

Shannon-Fano Codes 7

• If we can’t choose codewords with the “right” lengths, log2(1/pi),
we can try to get close.

• Shannon-Fano codes are constructed so that the codewords for the
symbols, with probabilities p1, . . . , pI , have lengths

li = ⌈log2(1/pi)⌉

Here, ⌈x⌉ is the smallest integer greater than or equal to x.

• The Kraft inequality says such a code exists, since

I
∑

i=1

1

2li
≤

I
∑

i=1

1

2log2(1/pi)
=

I
∑

i=1

pi = 1

• Example:

pi: 0.4 0.3 0.2 0.1

log2(1/pi): 1.32 1.74 2.32 3.32

li = ⌈log2(1/pi)⌉: 2 2 3 4

Codeword: 00 01 100 1100

Expected Lengths of Shannon-Fano Codes 8

• The expected length of a Shannon-Fano code for X, if symbols
have probabilities p1, . . . , pI , is

I
∑

i=1

pili =

I
∑

i=1

pi ⌈log2(1/pi)⌉

<
I
∑

i=1

pi (1 + log2(1/pi))

=

I
∑

i=1

pi +

I
∑

i=1

pi log2(1/pi))

= 1 + H(X)

• This gives an upper bound on the expected length of an optimal
code for X. However, the Shannon-Fano code itself may not be
optimal (though it sometimes is).

What Have We Shown? 9

• Combining the lower bound we derived as the source entropy and
the upper bound we just proved for Shannon-Fano codes, we’ve
now proved the following (Theorem 5.1 in MacKay’s book):

A source X can be encoded using an instantaneous code, C,
with expected length, L(C,X), satisfying

H(X) ≤ L(C,X) < H(X) + 1

• Two main theoretical problems remain:

1. Can we find optimal codes, which actually minimize L?

2. Can we somehow close the gap between H(X) and H(X) + 1
above, to show that the entropy is the exactly correct way of
measuring the average information content of a source?

Huffman Codes 10

• The first piece of good news is that there is a very simple algorithm
to construct symbol codes which are guaranteed to be optimal.

• The algorithm is called Huffman’s Algorithm and the codes it
generates are called Huffman Codes. They were developed by David
A. Huffman when he was a Ph.D. student at MIT in 1952.

•We will prove later that Huffman codes are in fact optimal,
but first let’s see the actual algorithm.

•We’ll concentrate on Huffman codes for a binary code alphabet.
Non-binary Huffman codes are similar, but slightly messier.

• Huffman’s algorithm is a recursive procedure which merges the two
least probable symbols into one new “meta-symbol” as it descends
into deeper levels of recursion and duplicates the resulting
“meta-codeword” as it ascends.

Huffman Procedure for Binary Codes 11

procedure Huffman:

inputs: symbols a1, . . . , aI

probabilities p1, . . . , pI

output: a code mapping a1, . . . , aI to codewords

if I = 2:

Return the code a1 7→ 0, a2 7→ 1.

else

Let j1, . . . , jI be a permutation of 1, . . . , I
for which pj1 ≥ · · · ≥ pjI .

Create a new symbol a′, with associated
probability p′ = pjI−1

+ pjI .

Recursively call Huffman to find a code for
aj1, . . . , ajI−2

, a′ with probabilities pj1, . . . , pjI−2
, p′.

Let the codewords for aj1, . . . , ajI−2
, a′ in

this code be w1, . . . , wI−2, w
′.

Return the code aj1 7→ w1, . . . , ajI−2
7→ wI−2, ajI−1

7→ w′0, ajI 7→ w′1.

Huffman Coding Example 12

Consider these probabilities: {.01, .04, .05, .10, .15, .15, .20, .30}.
The entropy of this source is H = 2.607... bits.

.01

.04

.05

.10

.15

.15

.20

.30

11111
11110

1110
110
011
010

10
00

1

0

1

1

1
11

1

0

0

0
00

0 1.0

.05
.1

.2

.4
.3

.6

The codeword lengths are {5, 5, 4, 3, 3, 3, 2, 2}.
The average codeword length is L = 2.65 bits.
In comparison, Shannon-Fano coding would give lengths {7, 5, 5, 4, 3, 3, 3, 2},
which would have given an average length of L = 3.02 bits.

Is Huffman the Answer to Everything? 13

• Huffman codes seem to have solved the main practical problem:
We can now construct an optimal symbol code for any source.

• But: This code is optimal only if the assumptions we made in
formalizing the problem match the real situation. Often they don’t:

– Symbol probabilities may vary over time.

– Symbols may not be independent.

– There is usually no reason to require that X1, X2, X3, . . . be
encoded one symbol at a time, as c(X1)c(X2)c(X3) · · · , unless
we really need instantaneous decoding.

Old Example: Black-and-White Images 14

• Recall the example from the first lecture, of black-and-white images.
..

..XX...XX...........XX.....XX.....................

..XX...XX...........XXX...XXX.....................

..XX...XX...X.......XX.XXX.XX.....................

..XXXXXXX...........XX..X..XX.....................

..XXXXXXX...X.......XX.....XX....XX....XXXXX.XXX..

..XX...XX...X.......XX.....XX...X..X...XX...X...X.

..XX...XX...X.......XX.....XX...X..X...XX...X...X.

..XX...XX...X.......XX.....XX....XX....XX...X...X.

..

There are only two symbols — “white” and “black”.
The Huffman code is white 7→ 0, black 7→ 1.

• This is just the obvious code. But we saw that various schemes
such as run length coding can do better than this.

• Partly, this is because the pixels are not independent. Even if they
were independent, however, we would expect to be able to compress
the image if black pixels are much less common than white pixels.

Entropy of a Binary Source 15

• For a binary source, with symbol probabilities p and 1 − p, the
entropy as a function of p looks like this:

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

• If p = 0.1, H(0.1) = 0.469, so we hope to compress a binary source
with symbol probabilities of 0.1 and 0.9 by more than a factor of 2.

•We obviously can’t do that if we encode symbols one at a time.

Solution: Coding Blocks of Symbols 16

•We can do better by using Huffman codes to encode blocks of
adjacent symbols.

• Suppose our source probabilities are 0.7 for white and 0.3 for black.
Assuming pixels are independent, the probabilities for blocks of two
pixels will be

white white 0.7 × 0.7 = 0.49
white black 0.7 × 0.3 = 0.21
black white 0.3 × 0.7 = 0.21
black black 0.3 × 0.3 = 0.09

• Here’s a Huffman code for these blocks:

WW 7→ 0, WB 7→ 10, BW 7→ 110, BB 7→ 111

The average length for this code is 1.81, which is less than the two
bits needed to encode blocks in the obvious way.

Extensions of a Source 17

•We formalize the notion of encoding symbols in blocks by defining
the N -th extension of a source, in which we look at sequences of
symbols, written as (X1, . . . , XN) or XN .

• If our original source alphabet, AX , has I symbols, the source
alphabet for its N -th extension, AN

X , will have IN symbols — all
possible blocks of N symbols from AX .

• If the probabilities for symbols in AX are p1, . . . , pq, the

probabilities for symbols in AN
X are found by multiplying the pi for

all the symbols in the block.
(This is appropriate when symbols are independent.)

• For instance, if N = 3:

P ((X1, X2, X3) = (ai, aj, ak)) = pi pj pk

Entropy of an Extension 18

We can easily prove that H(XN) = NH(X):

H(XN) =

I
∑

i1=1

· · ·

I
∑

iN=1

pi1· · · piN log

(

1

pi1 · · · piN

)

=
I
∑

i1=1

· · ·
I
∑

iN=1

pi1· · · piN

N
∑

j=1

log

(

1

pij

)

=
N
∑

j=1

I
∑

i1=1

· · ·
I
∑

iN=1

pi1· · · piN log

(

1

pij

)

=
N
∑

j=1

I
∑

ij=1

∑

ik for k 6=j

pi1· · · piN log

(

1

pij

)

=
N
∑

j=1

I
∑

ij=1

pij log

(

1

pij

)

×
∑

ik for k 6=j

pi1· · · pij−1
pij+1

· · · piN

=
N
∑

j=1

I
∑

ij=1

pij log

(

1

pij

)

= NH(X)

(Or just use the fact that E(U + V) = E(U) + E(V).)

