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LossLEssS DATA COMPRESSION 2

e Let's focus on the lossless data compression problem for now, and
not worry about noisy channel coding for now. In practice these
two problems are handled separately, i.e. we first design an efficient
code for the source (removing source redundancy) and then (if
necessary) we design a channel code to help us transmit the source
code over the channel (adding redundancy).

e Assumptions (for now):
1. the channel is perfectly noiseless
i.e. the receiver sees exactly the encoder's output
2. we always require the output of the decoder to exactly match the
original sequence X (lossless).
3. X is generated according to a fixed probabilistic model, p(X)
e We will measure the quality of our compression scheme (called a
code) by examining the average length of the encoded string Z,
averaged over p(X).

RECALL: MATHEMATICAL SETUP 1

e Start with a sequence of symbols X = X1, Xo,..., Xy from a
finite source alphabet Ay = {aq,a9,...}.

e Examples: Ay ={A, B, ..., Z, _}; Ax =10, 1, 2, ..., 255},
Ax ={C, G, T, A}; Ax =0, 1}.

e Encoder. outputs a new sequence Z = Z1,Zo, ..., 2\
(using a possibly different code alphabet A ).

e Decoder tries to convert Z back into X.

e In compression, the encoder tries to remove source redundancy.

e In noisy channel coding, the encoder tries to protect the message
against transmission errors by adding just the right redundancy.

e We almost always use Ay = 0,1 (e.g. computer files, digital
communication) but the theory can be generalized to any finite set.

ENCODING ONE SYMBOL AT A TIME 3

e To begin with, let's think about encoding one symbol X; at a time,
using a fixed code that defines a mapping of each source symbol
into a finite sequence of code symbols called a codeword.

(Later on we will consider encoding blocks of symbols together.)

e We will encode a sequence of source symbols X by concatenating
the codewords of each.

e This is called a symbol code.

e E.g. source alphabet is Ay = {C, G, T, A}. One possible code:
C =0, G—10. T —110, A— 1110
So we would have CC AT — 001110110.

e We require that the mapping be such that we can decode this
sequence, no matter what the original symbols were.




NOTATION FOR SEQUENCES & CODES 4

e Ay and Ay are the source and code alphabets.

° .A} and A}' denote sequences of one or more symbols
from the source or code alphabets.

e A symbol code, C, is a mapping Ax — AJZF.
We use ¢(z) to denote the codeword to which C' maps z.
e We use concatenation to extend this to a mapping for the extended
gt +.
code, CT : Ay — Ay
cHz1zg - ay) = e(ar)e(wz) - clay)
i.e., we code a string of symbols by just stringing together the
codes for each symbol.

o We'll sometimes also use C' to denote the set of all legal
codewords: {w | w = C(a) for some a € Ax}.

UNIQUELY DECODABLE & INSTANTANEOUS CODES 6

o A code is uniquely decodable if the mapping CT : A} — A} is
one-to-one, i.e. ¥V x and X" in A}, x # %' = ¢ (x) # ¢ (X))

e A code is obviously not uniquely decodable if two symbols have the
same codeword — e, if c(a;) = c(a;) for some i # j — so we'll
usually assume that this isn't the case.

e A code is instantaneously decodable if any source sequences x and
x’ in AT for which x is not a prefix of x" have encodings z = C(x)
and z' = C(x’) for which z is not a prefix of z'.

Otherwise, after receiving z, we wouldn't yet know whether the
message starts with z or with z’.

e Instantaneous codes are also called prefix-free codes
or just prefix codes.

WHAT CODES ARE DECODABLE? 5

e We only want to consider codes that can be successfully decoded.
e To define what that means, we need to set some rules of the game:

1. How does the channel terminate the transmission?
(e.g. it could explicitly mark the end, it could send only Os after
the end, it could send random garbage after the end,...)

2. How soon do we require a decoded symbol to be known?
(e.g. “instantaneously” — as soon as the codeword for the symbol
is received, within a fixed delay of when its codeword is received,
not until the entire message has been received,...)

e Easiest case: assume the end of the transmission is explicitly
marked, and don’t require any symbols to be decoded until the
entire transmission has been received.

e Hardest case: require instantaneous decoding, and thus it doesn’t
matter what happens at the end of the transmission.

EXAMPLES 7

Code A|Code B|Code C|Code D

a| 10 0 0 0
11 10 01 01
c| 111 110 011 11

Code A: Not uniquely decodable
Both bbb and cc encode as 111111

Code B: Instantaneously decodable
End of each codeword marked by 0

Code C: Decodable with one-symbol delay
End of codeword marked by following 0

Code D: Uniquely decodable, but with unbounded delay:
011111111111111 decodes as accceece
01111111111111 decodes as beeceee




MORE EXAMPLES 8

A CHECK FOR UNIQUE DECODABILITY 10

Code E|Code F|Code G

100 0 0
101 001 01
010 010 011
011 100 1110

QU O o Q

Code E: Instantaneously decodable
All codewords same length

Code F: Not uniquely decodable
e.g. baa,aca,aad all encode as 00100

Code G: Decodable with six-symbol delay.
(Try to work out why.)

e The Sardinas-Patterson Theorem tells us how to check whether a
code is uniquely decodable.

e Let (' be the set of codewords. Define Cjy = C.
For n > 0, define

Cp = {fwe AL | uw =v whereu € C, v € Cp_y
oru€ Cy_q, veCl}
Finally, define
Coo=C1 UCy U C3 U ---
e Theorem: the code C'is uniquely decodable if and only if
C and C are disjoint.

o We won't bother much with this theorem,
since as we'll see it isn't of much practical use.

A CHECK FOR INSTANTANEOUS CODES 9

EXISTENCE OF CODES 11

e A code is instantaneous if and only if no codeword is a prefix of
some other codeword. (ie if C; is a codeword, C;Z cannot be a
codeword for any Z). This is called a prefix(-free) code.

e Proof:
(=) If codeword C'(a;) is a prefix of codeword C'(a;), then the
encoding of the sequence x = a; is obviously a prefix of the
encoding of the sequence x’ = aj.
(<) If the code is not instantaneous, let z = C'(x) be an encoding
that is a prefix of another encoding z’ = C'(x/), but with x not a
prefix of x’, and let x be as short as possible.
The first symbols of x and x’ can’t be the same, since if they were,
we could drop these symbols and get a shorter instance. So these
two symbols must be different, but one of their codewords must be
a prefix of the other.

e Since we hope to compress data, we would like codes that are
uniquely decodable and whose codewords are short.

e Also, we'd like to use instantaneous codes where possible since they
are easiest and most efficient to decode.

o If we could make all the codewords really short, life would be really
easy. Too easy. Why?
Because there are only a few possible short codewords and we can't
reuse them or else our code wouldn't be decodable.

e Instead, making some codewords short will require that other
codewords be long, if the code is to be uniquely decodable.

e Question 1: What sets of codeword lengths are possible?

e Question 2: Can we always manage to use instantaneous codes?




McMILLAN’S INEQUALITY 12

e There is a uniquely decodable binary code with
codewords having lengths 1, ..., [ if and only if

L]
Z@Sl
=1

o E.g. there is a uniquely decodable binary code
with lengths 1, 2, 3, 3, since

1/2 + 1/4+1/8 + 1/8=1
e An example of such a code is {0, 01, 011, 111}.

e There is no uniquely decodable binary code
with lengths 2, 2, 2, 2, 2, since

1/4+1/4+1/44+1/44+1/4>1

WE CAN ALwAYS USE INSTANTANEOUS CODES 14

e Since instantaneous codes are a proper subset of uniquely decodable
codes, we might have expected that the condition for existence of a
u.d. code to be less stringent than that for instantaneous codes.

e But combining Kraft's and McMillan's inequalities, we conclude
that there is an instantaneous binary code with lengths I, ..., [
if and only if there is a uniquely decodable code with these lengths.

e Implication: There is probably no practical benefit to using
uniquely decodable codes that aren’t instantaneous.

e Happy consequence: We don't have to worry about how the
encoding is terminated (if at all) or about decoding delays (at least
for symbol codes; for block codes this will change).

KRAFT’S INEQUALITY 13

e There is an instantaneous binary code with
codewords having lengths [y, ..., I if and only if
I

1
D g =1

1=1
e This is exactly the same condition as McMillan's inequality!

e E.g. there is an instantaneous binary code
with lengths 1, 2, 3, 3, since

1/2+1/44+1/8+1/8=1
e An example of such a code is {0, 10, 110, 111}.
e There is an instantaneous binary code with lengths 2, 2, 2, since
1/4+1/4+1/4<1
e An example of such a code is {00, 10, 01}.

ProviNG THE TwO INEQUALITIES 15

e We can prove both Kraft's and McMillan's inequality by proving
that for any set of lengths, [, ..., {j, for binary codewords:

A)If Z«{:l 1/2li < 1, we can construct an instantaneous code
with codewords having these lengths.
B) If Ele 1/2% > 1, there is no uniquely decodable code with
codewords having these lengths.
e (A) is half of Kraft's inequality.
(B) is half of McMillan's inequality.
e Using the fact that instantaneous codes are uniquely decodable,

(A) gives the other half of McMillan's inequality, and (B) gives the
other half of Kraft's inequality.

e To do this, we'll introduce a helpful way of thinking about codes
as...trees!




