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Lossy Compression 1

•Many kinds of data — such as images and audio signals — contain
“noise” and other information that is not really of interest.
Preserving such useless information seems wasteful.

•A common approach: Lossy compression, for which
decompressing a compressed file gives you something close to the
original, but not necessarily exactly the original.

•We should be able to compress to a smaller file size if we don’t
have to reproduce the original exactly.
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What do We Mean by “Close”? 2

• Any lossy compression scheme is based (at least implicitly) on some
idea of what counts as “close to the original”.

• This is a question that can only be answered by considering the
users of the compression program, and what they want.

• For images and audio signals, two fundamental issues are:

– What differences can humans perceive?
For example, to a first approximation,
humans perceive only relative energies of
different frequency bands in audio but not
the associated phases of sine waves.

– What differences do humans find annoying or distracting?

Slight changes in colour might be regarded
as less important than making a straight line
be jagged.

Formalizing Distortion 3

• Suppose the input to the compression program is the sequence
a1, a2, . . . , aN , and the decompression program outputs the
sequence b1, b2, . . . , bN . (The ai and the bi might come from the
same or different alphabets, e.g. before/after quantization.)

•We can measure how close the decompressed output is to the
original by its average “distortion”:

d̄ =
1

N

N
∑

i=1

d(ai, bi)

d(a, b) is a non-negative distortion function measuring how bad it is
for a decompressed symbol to be b if the original was a.

•Note: In practice, the overall distortion might not be a sum of
distortions for individual symbols, but we’ll ignore that
complication.



Simple Distortion Functions 4

•Distortion functions that measure what we’re really interested in are
likely to be complicated. But we can consider some simple
examples that are easier to handle.

•Hamming distance: For a bilevel image (such as a FAX), we
might use a distortion function for which d(0, 0) = d(1, 1) = 0 and
d(0, 1) = d(1, 0) = 1.

• Squared error: For a gray-scale image, with pixels values in
{0, . . . , 255}, or for an audio signal with sample quantized to 8 or
16 bits, we might use d(a, b) = (a − b)2.

•Absolute error: If we want to penalize big errors less severely, we
might consider the distortion d(a, b) = ‖a − b‖.

Rate for a Given Distortion 5

• If the entropy of our source is H , we expect to be able to losslessly
compress N symbols into NH bits — ie, at rate H .

• But what if decompression is allowed to produce any output that
has average distortion less than some limit, D?

• The rate distortion function,
R(D), tells us how well we can do
then. It is the smallest rate
(average bits per input symbol)
for any compression scheme that
has average distortion no greater
than D.

• Note that R(D) depends on both
the source probabilities and on the
distortion function chosen.

Example: Binary Data 6

• Suppose our source alphabet is binary, with equal probabilities for 0
and 1 (independently from symbol to symbol).

• Suppose we will decompress to the same alphabet, and that we
measure distortion by Hamming distance.

• If we insist on lossless compression, we can’t compress at all, since
the entropy is one.

• How well can we compress if we allow an average distortion of up
to 1/8 — ie, if we allow up to one in eight bits to be wrong?

00110101 00110001

Lossy Compression Using Hamming Codes 7

• Here’s a scheme that compresses a binary source to 4/7 of the
original file size while altering only 1/8 of the bits, on average:

1. Grab the next 7 input bits from the source.

2. Pretend these bits are received data from
a [7, 4] Hamming code in systematic form.

3. “Decode” these 7 bits by the usual
Hamming code procedure.

4. Output the 4 message bits from
this “decoded” codeword.

• To decompress, we take blocks of 4 bits and
“encode” them using 7 bits in the usual way.

•Result: Perfect reconstruction of the 7 bits 1/8 of the time;
one wrong bit 7/8 of the time.



The Rate Distortion Theorem 8

• Consider all channels, C, with input alphabet {ai} and output
alphabet {bj}. Given the input probabilities that our source has, we
can find for each such channel:

– Its mutual information, I(A,B).

– The average distortion between the channel input and the
resulting output.

• Shannon proved that the rate distortion function, R(D), is equal to
the minimum value for I(A,B) over all channels whose average
distortion is no more than D.

• For a binary source where 0 has probability p0 ≤ 1/2, and where
distortion is measured by Hamming distance, it turns out that

R(D) =

{

H(p0) − H(D) for 0 ≤ D ≤ p0

0 for D > p0

How Can We Achieve This? 9

• As for his noisy coding theorem, Shannon’s rate distortion theorem
can be proved using codes chosen at random.

• Consider a channel C that minimizes I(A,B) subject to the
distortion between input and output being less than D.
We find the output probabilities for such channel, and then pick
codewords at random with symbol probabilities equal to these
output probabilities.

• Encoding procedure: Find the codeword closest (as measured
by distortion) to the actual message; then send an index of that
codeword. If we chose 2K codewords, sending this index will take
K bits, for a rate of K/N .

•Decoding procedure: Output the codeword corresponding to
the received index. This is called vector quantization.

Lossy Data Compression in Practice 10

• Shannon’s elegant theory currently plays little role in practical lossy
data compression (or the similar task of “vector quantization”).

• Instead, various ad hoc methods are used.

• Two reasons for this:

1. Formalizing a suitable distortion function
taking account of human perceptual
abilities and tolerances is difficult.

2. The step from the impractical random
codes used to prove the rate distortion
theorem to a practical method of optimal
compression hasn’t been achieved.

•Overcoming these issues is a current
challenge for research.


