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What is Information Theory? 1

• Information Theory is the formal study of the (related) problems of
data compression and data communication (error correction).

•Data compression: the task of taking a sequence of symbols and
re-representing them in a more compact way but so that we can
still recover the original sequence. Examples:

– Compressing computer files (e.g. gzip).

– Compressing images (e.g. jpeg,gif).

– Compressing audio/video (e.g. mpeg).

• Communication: transmitting and storing sequences of symbols
reliably when the medium we are using introduces errors. Examples:

– ECC memory

– Error corrections on CDs.

– Cell phone and space probe transmissions.

Example: compressing black and white images 2

• Say we are trying to compress an image of black and white pixels:
..................................................

..XX...XX...........XX.....XX.....................

..XX...XX...........XXX...XXX.....................

..XX...XX...X.......XX.XXX.XX.....................

..XXXXXXX...........XX..X..XX.....................

..XXXXXXX...X.......XX.....XX....XX....XXXXX.XXX..

..XX...XX...X.......XX.....XX...X..X...XX...X...X.

..XX...XX...X.......XX.....XX...X..X...XX...X...X.

..XX...XX...X.......XX.....XX....XX....XX...X...X.

..................................................

• e.g. the image above is 10 rows by 50 columns, so it has 500 pixels.

• If we encode white with 0 and black with 1, it takes 500 bits
(“binary digits”) to store this image.

• Can we do better? Hmm...
Well, there are more white than black pixels.
And both tend to come in clumps together.
Can we exploit these observations to make our encoding shorter?

Send only black pixels 3

..................................................

..XX...XX...........XX.....XX.....................

..XX...XX...........XXX...XXX.....................

..XX...XX...X.......XX.XXX.XX.....................

..XXXXXXX...........XX..X..XX.....................

..XXXXXXX...X.......XX.....XX....XX....XXXXX.XXX..

..XX...XX...X.......XX.....XX...X..X...XX...X...X.

..XX...XX...X.......XX.....XX...X..X...XX...X...X.

..XX...XX...X.......XX.....XX....XX....XX...X...X.

..................................................

•One idea is to encode only the black pixels, by encoding the row
and starting/ending columns for each “run” of black as binary #s.

• This requires (4+6+6)=16 bits per run (can you see why?).

• In the image above, there are 54 black runs, so it would cost
54x16 = 864 bits to encode this image.

• That’s worse than the 500 bit encoding we started with!



Run-length encoding 4
..................................................

..XX...XX...........XX.....XX.....................

..XX...XX...........XXX...XXX.....................

..XX...XX...X.......XX.XXX.XX.....................

..XXXXXXX...........XX..X..XX.....................

..XXXXXXX...X.......XX.....XX....XX....XXXXX.XXX..

..XX...XX...X.......XX.....XX...X..X...XX...X...X.

..XX...XX...X.......XX.....XX...X..X...XX...X...X.

..XX...XX...X.......XX.....XX....XX....XX...X...X.

..................................................

• Another idea is to scan out the image (left to right, top to
bottom), and encode “runs” of white/black pixels.
(Assume the size of the image is known.)

• Say we use 8 bits per run, with the first bit to tell us the colour,
and the other 7 bits the length of the run (from 0 to 127 in binary).

• In the image above, there are 55 white and 54 black runs, so the
total size would be 8x(55+54)=872 bits.

• That’s slightly worse than 864 and still worse than 500.

• Actually, we only need to send the colour of the first run (why?),
but that only saves us 108 bits, still leaving 764.

Send rectangles of black 5
..................................................

..XX...XX...........XX.....XX.....................

..XX...XX...........XXX...XXX.....................

..XX...XX...X.......XX.XXX.XX.....................

..XXXXXXX...........XX..X..XX.....................

..XXXXXXX...X.......XX.....XX....XX....XXXXX.XXX..

..XX...XX...X.......XX.....XX...X..X...XX...X...X.

..XX...XX...X.......XX.....XX...X..X...XX...X...X.

..XX...XX...X.......XX.....XX....XX....XX...X...X.

..................................................

• Rather than sending each row’s runs on its own, we could encode
the top left and bottom right coordinates of rectangles containing
all black pixels.

• Each rectangle requires 2*(4+8)=24 bits.

• In the image above, there are 20 black rectangles, so it would cost
20x20 = 400 bits to encode this image.

• Finally, a bit better than 500!

•Other ideas: use fewer bits per run; don’t allow runs of length zero;
use different schemes for black vs. white runs; divide the image into
sub-images and encode only those which aren’t all white; ...

Modeling the Source 6

•Moral of the story: the more knowledge about our source we
incorporate into our compression scheme, the better off we are
(as long as the knowledge is correct).

• The most common way to incorporate knowledge is to build a
probabilistic model of the sorts of inputs you expect to see.
Given such a model, information theory can help us solve the
mathematical and algorithmic problem of efficiently encoding
sequences from the source.

• E.g. we might model black and white images using the conditional

probability that a pixel is black given a certain number of pixels
above it and left of it.

• If we somehow know enough about the source to specify these
probabilities we can use a static model; more likely we’ll have to
learn them as we go through the image – an adaptive model.

What’s the best we could ever do, on average? 7

• Can we say anything about the best scheme we could possibly
come up with to compress images like “Hi Mom”?

• Surprisingly, if we model images (or any other sequence of symbols)
as coming from a probabilistic source, and imagine using a fixed
encoder over and over again to compress whatever the source
produces, we can say something (quite strong) about the best

average compression we could ever achieve.

• In particular, then there is a hard lower limit, called the source

entropy below which no scheme can losslessly compress.

• This is Shannon’s famous Noiseless Coding Theorem (1948).

• Limits performance, given a source model. Many algorithms exist
which perform nearly optimally with respect to these limits.

• But often quite hard to get good source models; therein lies the art
of applying information theory to real world problems.



Model all data/messages as strings of binary digits8

• In order to be able to perform algorithmic and mathematical
analyses of the problems of data compression and communication,
we will model all data/messages to be transmitted or compressed
as strings of binary digits (bits).

• For our purposes, the content of the message is irrelevant; the bits
could come from a file, as a stream of digitized audio over a
wireless channel, as an email or HTML page over the web. The
physical medium of the communication channel is also irrelevant; it
could be a noisy radio link, a disk drive, or a phone line.

•We care only about statistical structure in message/noisy channel.

• For compression, we want to find patterns that occur non-randomly
which we can exploit to achieve compression.

• For communication, we want to design an encoding scheme that is
robust to the kind of distortions our channel will introduce.

Example: Error Correction in Noisy Channels 9

• Suppose we are trying to send a sequence of bits through a channel
that sometimes randomly flips a bit from 0→1 or vice versa.

• How can we encode the original sequence so that we can still
recover it reliably at the other end? Simple idea: repetition code.

• Send each bit k times. Effective transmission rate is now 1/k.
e.g. with k = 2 to send 01101 we actually send 0011110011

with k = 3 to send 01101 we actually send 000111111000111

• The decoder looks at groups of k received bits and replaces each
group with the bit that occurs most often in the group (which you
can prove is the best thing to do) or requests resend.
Example, with k = 3
sequence 01101 → 000111111000111 transmission
received code → 010111101100101 → 01101 decoded

• How much does this improve reliability (vs. rate reduction)?

Error Probability vs. Rate 10

Here are the plots are for P = 0.1.
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Analysis of the Repetition Code 11

• Assume each bit of our transmission gets flipped with some
probability P , independently for each bit. (May not be true.)

• Sender: repeat each bit k times. Receiver: take majority vote.

• For odd k, we make a decoding error if a group has > k/2 errors.

• Probability of decoding an original bit correctly ∝
∑k

i=(k+1)/2 P i.

• If P = 0.2 and we are sending message of only 8 bits:
k = 1 ⇒ p(message-ok) = 0.851; rate=1.0
k = 2 ⇒ p(message-ok) = 0.996; rate≤0.365
k = 3 ⇒ p(message-ok) = 0.999; rate=0.333

•Of course, our rate of transmission goes down by a factor of k.

• As we increase k, we can drive p(correct) to 1, but we also drive
our transmission rate to zero at the same time.

• Is this inevitable?



The Surprising Answer: No! 12

• Amazingly, using smarter schemes than repetition, it turns out that
we actually can transmit with arbitrarily small error at a finite
(non-zero) rate called the capacity of the channel.

• This is Shannon’s famous Noisy Coding Theorem (1948).

• For example, in our channel with P = 0.1, the capacity turns out
to be 0.531, in other words we can obtain virtually zero errors while
only transmitting less than twice as many bits are in the original
message.

• But there is a catch: to achieve arbitrarily small errors, we need to
encode the original message in long blocks of bits (not just one bit
at a time). This creates a large delay at the decoder since we have
to wait for a whole block to be decoded before we can see the bits
at the start of the block.

Mathematical Setup 13

•We can formalize compression and communication as specific
mathematical problems.

•We always start with a sequence of symbols s = s1, s2, . . . , sN
from a finite alphabet A. (e.g. ASCII strings).

•During compression/transmission we will convert this sequence into
a new sequence r = r1, r2, . . . , rM (using a possibly different
alphabet B) and then back into s during decompression/reception.

•Our goal is to come up with two functions:
an encoder e(s) = r and a decoder d(r).

• In both cases, we want to be able to recover the original string from
its encoded version, while keeping the length of the encoding short.

Requirements on the Encoder and Decoder 14

• In compression, we require that d(e(s)) = s ∀s
(i.e. the encoder and decoder functions compose to identity).

•Our goal is to make the “size” of e(s) as small as possible, “on
average” (averaged over our source distribution).

•We want the encoder to remove redundancy from input sequences.

• In transmission, r will have noise added to it by some (stochastic)
noise function n(r) = r′ called the channel.

•Our goal is to make d(n(e(s))) = s “almost always”, without
making e(s) “too big” (now averaged over both the source and
noise distributions).

•We want the encoder to add redundancy to the input sequence.

Measuring how well we do 15

• In compression, we want our encoding to be as small as possible.

• In transmission, we want to maximize the rate at which we can
send/receive over the noisy channel, while still achieving acceptably
good recovery of the original data.

• In many cases (e.g. compressing computer files, reading/writing to
memory chips) we require lossless recovery, which means that the
recovered sequence of symbols is exactly identical to the original.

• In other cases (e.g. images, audio, video) we are willing to accept
some distortion, meaning that the recovered sequence may be
slightly different than the original. Of course, this often means we
can compress/transmit much more aggressively.

•We may also require that the encoding or decoding process be fast,
have small delay or use only a small amount of processor power or
extra memory (e.g. streaming audio).



What this course will cover 16

• The mathematical theory behind solving the problems of
compression and communication, culminating in two famous
theorems proved by Claude Shannon in 1948 that give us limits on
how well any method can do.

• Practical algorithms (which took much longer to appear) for
actually doing compression/communication that are almost optimal
according to the theory. Examples: arithmetic coding, linear codes,

low-density parity check codes.

•Modelling issues; i.e. how we can take a real world problem and
cast in into the mathematical form necessary for us to analyze it
with Shannon’s theorems and apply known algorithms to it.
Examples: source modeling using dictionary methods such as PPM

and Lempel-Ziff (on which gzip is based); channel models such as
binary symmetric channels.

Background Needed 17

• You’ll need certain tools to understand the theory and algorithms
we will cover this term:

– Probability and Statistics

– Linear Algebra

– Modular Arithmetic

– Basic Programming

• Possible Extra Topics (time permitting)

– Shannon’s rate-distortion theory for lossy data compression.

– Practical algorithms for lossy data compression.

– Information theory with continuous random variables
(as opposed to discrete symbols).

– Other applications of information theory in biology, physics, etc.


