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Reminder: Linear Codes 1

• Recall that Shannon’s second theorem tells us that for any noisy
channel, there is some code which allows us to achieve error free
transmission at a rate up to the capacity.

• However, this might require us to encode our message in very long
blocks, which if we implemented codes naively would require
memory and time exponential in the blocklength.

• So we need a way to define a code and to encode/decode that
requires memory/time only polynomial in the block size.

• Linear codes provide this by defining a code using a set of basis
codewords (rows of the generator matrix) or equivalently using a
set of constraint equations (rows of the parity check matrix).

Reminder: Distance of a Code 2

• A code’s minimum distance is the minimum of d(u,v) over all
distinct codewords u and v.

• If the minimum distance is ≥ 2t + 1, nearest neighbor decoding will
always decode correctly when there are ≤ t errors.

• To find the minimum distance for a code with 2K codewords, we
will in general have to look at all 2K(2K−1)/2 pairs of codewords.

• For linear codes, the minimum distance is the minimum weight of
the 2K−1 non-zero codewords, which is equal to the rank of the
parity-check matrix H plus one.

• Special cases:

– If H has a column of all zeros, then d = 1.

– If H has two identical columns, then d ≤ 2.

– For binary codes, if all columns are distinct and non-zero, d ≥ 3.

Hamming Codes 3

•We have seen that a binary [N,K] code will correct any single error
if all the columns in its parity-check matrix are non-zero & distinct.

•One way to achieve this: Make the N − K bits in successive
columns be the binary representations of the integers 1, 2, 3, etc.

• E.g. to get a parity-check matrix for a [7, 4] code capable of
correcting any single error (this was the assignment question):





0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1





•When N is a power of two minus one, the columns of H contain
binary representations of all non-zero integers up to 2N−K − 1.

• These are the called the Hamming codes after their inventor, Dick
Hamming, a Los-Alamos scientist, Bell Labs engineer, collaborator
of Shannon and later founder of the ACM.



The [7, 4] Binary Hamming code 4

• The [7, 4] Hamming code is defined over Z2 by the following four
basis vectors:

1000101, 0100110, 0010111, 0001011

Since these basis vectors are independent, there are 16 codewords.

•We could also define the code by the following equations that are
satisfied by any codeword u:

u1 + u2 + u3 + u5 = 0

u2 + u3 + u4 + u6 = 0

u1 + u3 + u4 + u7 = 0

• This code is capable of correcting any single bit transmission error.

• There are other sets equations and other sets of basis vectors that
define an equivalent code, just with the check bits permuted.

Distance of the [7, 4] Hamming Code 5

• The [7, 4] Hamming code is defined by the parity-check matrix:




0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1





• Clearly, all the columns of H are non-zero, and they are all distinct.
So d ≥ 3. We can see that d = 3 exactly by noting that the first
three columns are linearly dependent, since





0
0
1



 +





0
1
0



 +





0
1
1



 =





0
0
0





•Or we can observe that some codewords (e.g. 1110000) have
weight of only 3.

• Since it has minimum distance 3, this code can correct any single
bit transmission error.

Hamming’s Sphere-Packing Bound 6

•We’d like to make the minimum distance as large as possible, or
alternatively, have as many codewords as possible for a given
distance. There’s a limit, however.

• Consider a binary code with d = 3, which can correct any single
error. The “spheres” of radius one around each codeword must be
disjoint — so that any single error leaves us closest to the correct
decoding.

• For codewords of length N , each such sphere contains 1+N points.
If we have m codewords the total number of points in all spheres
will be m (1+N ), which can’t be greater than the total number of
points, 2N .

• So for binary codes that can correct any single error, the number of
codewords is limited by

m ≤ 2N/(1 + N )

Distances and Packing 7

• Here’s a picture of codewords (black dots) for a code with minimum
distance 3, showing the limits we just discussed:

radius=1

Each sphere contains
N+1 codewords

Separation=
2*radius +1



A More General Version of the Bound 8

• A binary code of length N that is guaranteed to correct any pattern
of up to t errors can’t have more than this number of codewords:

2N
(

1 +

(

N

1

)

+

(

N

2

)

+ · · · +

(

N

t

))−1

• The kth term in the brackets is the number of possible patterns of
k errors in N bits:

(

N

k

)

=
N !

k! (N−k)!

• If the above bound is actually reached, the code is said to be
perfect. For a perfect code, the disjoint spheres of radius t around
codewords cover all points.

• Very few perfect codes are known. Usually, we can’t find a code
with as many codewords as would be allowed by this bound.

Hamming Codes are Perfect! 9

• For each positive integer c, there is a binary Hamming code of
length N = 2c − 1 and dimension K = N − c. These codes all
have minimum distance 3, and hence can correct any single error.

• They are also perfect, since

2N/(1 + N ) = 22c−1/(1 + 2c − 1) = 22c−1−c = 2K

which is the number of codewords.

•One consequence: A Hamming code can correct any single error,
but if there is more than one error, it will not be able to give any
indication of a problem — instead, it will “correct” the wrong bit,
making things worse.

• The extended Hamming codes add one more check bit (ie, they
have one more row of all 1s to the parity-check matrix).
This allows them to detect when two errors have occurred.

The Gilbert-Varshamov Bound 10

• The sphere-packing bound is an upper limit on how many
codewords we can have. There’s also a lower limit, showing there
is a code with at least a certain number of codewords.

• There is a binary code of length N with minimum distance d that
has at least the following number of codewords:

2N
(

1 +

(

N

1

)

+

(

N

2

)

+ · · · +

(

N

d − 1

))−1

•Why? Imagine spheres of radius d−1 around codewords in a code
with fewer codewords than this. The number of points in each
sphere is the sum above in brackets, so the total number of points
in these spheres is less than 2N . So there’s a point outside these
spheres where we could add a codeword that is at least d away
from any other codeword.

Encoding Hamming Codes 11

• By rearranging columns, we can put the parity-check matrix for a
Hamming code in systematic form. For the [7, 4] code, we get

H =





0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1





• Recall that a systematic parity check matrix [PT | IN−K ] goes with
a systematic generator matrix [IK |P ]. In this case, we have

G =









1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1









•We encode a message block, s, of four bits, by computing t = sG.
The first four bits of t are the same as s; the remaining three bits
are “check bits”. Note: The order of check bits may vary
depending on how the code is constructed.



Syndromes: Decoding Hamming Codes 12

• Consider the original (non-systematic) parity-check matrix:

H =





0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1





• Suppose t is sent, but r = t + n is received (n is channel noise).

• The receiver can compute the syndrome for r:

z = rHT = (t + n)HT = tHT + nHT = nHT

Note that tHT = ~0 since t is a codeword.

• If there were no errors, n = ~0, so z = ~0.

• If there is one error, in position i, then nHT will be the ith column
of H — which contains the binary representation of the number i!

• So to decode, we compute the syndrome, and if it is non-zero, we
flip the bit it identifies. Easy! (If we rearranged H to systematic
form, we modify this procedure in corresponding fashion.)

Syndrome Decoding in General 13

• For any linear code with parity-check matrix H , we can find the
nearest-neighbor decoding of a received block, r, using the
syndrome, z = rHT .

• If the received data is r = t + n, where t is the transmitted
codeword, and n is the noise pattern, then z = nHT (since
tHT = ~0).

• A nearest-neighbor decoding can be found by finding an noise
pattern, n, that produces the observed syndrome z, and which has
the smallest possible weight. Then we decode r as r − n.

• So encoding involves a matrix multiplication and so does decoding!
However, decoding also involves a table lookup...

Building a Syndrome Decoding Table 14

•We can build a table indexed by the syndrome z that gives the
noise pattern n of minimum weight for each syndrome.

•We initialize all entries in the table to be empty.

•We then consider the non-zero noise patterns, n, in some order of
non-decreasing weight. For each n, we compute the syndrome,
z = nHT , and store n in the entry indexed by z, provided this
entry is currently empty.

•We stop when the table has no empty entries left to fill.

• Problem: The size of the table is exponential in the number of
check bits — it has 2N−K − 1 entries for an [N,K] code.

Example: The [5, 2] Code 15

• Recall the [5, 2] code with this parity-check matrix:





1 1 0 0 0
0 0 1 1 0
1 0 1 0 1





• Here is a syndrome decoding table for this code:

z n

001 00001
010 00010
011 00100
100 01000
101 10000
110 10100
111 01100

The last two entries are not unique.


