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Shannon’s Noisy Coding Theorem for the BSC 1

• A BSC with error probability f < 1/2 has capacity 1 − H2(f ).

•Theorem: For any η > 0 and ǫ > 0, there is a code (of some
length N) whose rate, R, is at least C − η, and for which the
probability that nearest neighbor decoding will fail is less than ǫ.

• Last class we started to give a proof of this, which shows that a
randomly chosen code performs quite well and hence that there
must be specific codes which also perform quite well (although the
proof does not construct such a code).
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Proving the Theorem with Random Codes 2

• Here’s the process (equivalent to generating a random code):

1. We randomly pick one codeword, x, which the sender transmits.

2. The channel randomly generates an error pattern, n, that is
added to x to give the received data, y.
Let the number of transmission errors (ie, ones in n) be w.

3. We now randomly pick the other M−1 codewords. If the
Hamming distance from y of all these codewords is greater than
w, nearest-neighbor decoding will make the correct choice.

• If the probability that this process leads to a decoding error is < ǫ,
then there must be some specific code with error probability < ǫ.

• For large N , the fraction of errors w/N in the transmission is very
close to the crossover probability f of the channel:

P (f − β < w/N < f + β) ≥ 1 − ǫ/2

Decoding with Typical Error Patterns 3

• The probability that the codeword nearest to y is the correct
decoding will be at least as great as the probability that the
following sub-optimal decoder decodes correctly:

If there is exactly one codeword x∗ for which n = y − x∗ has
a “typical” number of ones, then decode to x∗, otherwise
declare that decoding has failed.

• This sub-optimal decoder can fail in two ways:

– The correct decoding, x, may correspond to an error pattern,
n = y − x, that is not “typical”.

– Some other codeword, x′, may exist for which the error pattern
n′ = y − x′ is typical.

• The total probability of decoding failure is less than the sum of the
probabilities of failing in these two ways.
We will try to limit each of these to ǫ/2.



Bounding the Probability of Failure 4

•We can choose N large enough to ensure the actual error pattern
will be non-typical with probability less than ǫ/2:

P (f − β < w/N < f + β) ≥ 1 − ǫ/2

•We now need to limit the probability that some other codeword also
corresponds to one of the J typical error patterns. J is bounded by

J < 2N(H2(f)+β log2((1−f)/f))

• For a random codeword x′ (other than the one actually
transmitted), the difference (x′ − y) will contain 0s and 1s that are
independent and equally likely. It will be “typical” with probability

J/2N < 2−N(1−H2(f)−β log2((1−f)/f))

• The probability that any of the M − 1 incorrect codewords will
differ from y by a typical error pattern is bounded by M times this.
We need this bound to be less than ǫ/2, ie

M 2−N(1−H2(f)−β log2((1−f)/f)) < ǫ/2

Finishing the Proof 5

• Finally, we need to pick β, M , and N so that the two types of error
have probabilities less than ǫ/2, and the rate, R is at least C − η.

•We will let M = 2⌈(C−η)N⌉, and make sure N is large enough that
R = ⌈(C − η)N⌉/N < C [and P (f − β < w/N < f + β) ≥ 1 − ǫ/2].

•With this value of M , we need

2⌈(C−η)N⌉ 2−N(1−H2(f)−β log2((1−f)/f)) < ǫ/2

⇒ 2−N(1−H2(f)−⌈(C−η)N⌉/N−β log2((1−f)/f)) < ǫ/2

• The channel capacity is C = 1 − H2(f ), so that
1 − H2(f ) − ⌈(C − η)N⌉/N = C − R is positive.

• For a sufficiently small value of β (which we can get with large N),
1 − H2(f ) − ⌈(C − η)N⌉/N − β log2((1 − f )/f ) will also be
positive. With this β and a large enough N , the probabilities of
both types of error will be less than ǫ/2, so the total error
probability will be less than ǫ.

Good Codes and Minimum Distance 6

• Recall that for a code to be guaranteed to correct up to t errors,
it’s minimum distance must be at least 2t + 1.

•What’s the minimum distance for the random codes used to prove
the noisy coding theorem?

• A random N -bit code is very likely to have minimum distance
d ≤ N/2 — if we pick two codewords randomly, about half their
bits will differ. So these codes are likely not guaranteed to correct
patterns of N/4 or more errors.

• A BSC with error probability f will produce about Nf errors.
So for f > 1/4, we expect to get more errors than the code is
guaranteed to correct. Yet we know these codes are good!

•Conclusion: A code may be able to correct almost all patterns of
t errors even if it can’t correct all such patterns.

Product Codes 7

• A product code is formed from two other codes C1, of length N1,
and C2, of length N2. The product code has length N1N2.

•We can visualize the N1N2 symbols of the product code as a 2D
array with N1 columns and N2 rows.

•Definition of a product code:
An array is a codeword of the
product code if and only if

– all its rows are codewords of C1

– all its columns are codewords of C2

1

2 2

1

2

1

N  - K  

K

N  - K K

from the check bits
Check bits computed

from the columns
Check bits computed

from the rows
Check bits computed

being encoded
Bits of the message

•We will assume here that C1 and C2 are linear codes, in which case
the product code is also linear. (Can you see why?)

• The product codeword (as a matrix) is the outer product of the
two original codewords (as vectors).



Dimensionality of Product Codes 8

• Suppose C1 is an [N1, K1] code and C2 is an [N2, K2] code.
Then their product will be an [N1N2, K1K2] code.

• Suppose C1 and C2 are in systematic form.
Here’s a picture of a codeword of the product code:
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• The dimensionality of the product code is not more than K1K2,
since the message bits in the upper-left determine the check bits.

•We’ll see that the dimensionality equals K1K2 by showing how to
find correct check bits for any message.

Encoding Product Codes 9

• Here’s a procedure for encoding messages with a product code:

1. Put K1K2 message bits into the upper-left K2 by K1 corner of
the N2 by N1 array (using the outer product of the messages).

2. Compute the check bits for the first K2 rows, according to C1.

3. Compute the check bits for all N1 columns, according to C2.

• After this, all the columns will be codewords of C2, since they were
given the right check bits in step (3). The first K2 rows will be
codewords of C1, since they were given the right check bits in step
(2). But are the last N2 − K2 rows codewords of C1?

• Yes! Check bits are linear combinations of message bits.
So the last N2 − K2 rows are linear combinations of earlier rows.
Since these rows are in C1, their combinations are too.

Decoding Product Codes 10

• Products of even small codes have lots of check bits, so decoding
directly may be infeasible.

• But if C1 and C2 can easily be decoded, we can decode the product
code by first decoding the rows (replacing them with the decoding),
then decoding the columns. (Or the other way around.)

• This will usually not be a nearest-neighbor decoder (and hence will
be sub-optimal, assuming a BSC and equally-likely messages).

Minimum Distance of Product Codes 11

• If C1 has minimum distance d1 and C2 has minimum distance d2,
then the minimum distance of their product is d1d2.

•Proof:

Let u1 be a codeword of C1 of weight d1 and u2 be a codeword of
C2 of weight d2. Build a codeword of the product code by putting
u1 in row i of the array if u2 has a 1 in position i. Put zeros
elsewhere. This codeword has weight d1d2.

The new codeword is the
outer product of the
vectors u1 and u2.
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• Furthermore, any non-zero codeword must have at least this
weight. It must have at least d2 rows that aren’t all zero, and each
such row must have at least d1 ones in it.



How Good are Products of Codes? 12

• Let C be an [N,K] code of minimum distance d
(guaranteed to correct t = ⌊(d−1)/2⌋ errors).

• How good is the code obtained by taking the product of C with
itself p times?

Length: Np = Np

Rate: Rp = Kp/Np = (K/N )p → 0
Distance: dp = dp

Relative distance: ρp = dp/Np = (d/N)p → 0

• The code can correct up to about dp/2 errors, corresponding to a
proportion of errors of ρp/2.

• For a BSC with error probability f , we expect that for large N , the
proportion of erroneous bits in a block will be very close to f .
(The Law of Large Numbers once again.)

Why use Products of Codes? 13

• The analysis above shows that for large N , these product codes are
both unlikely to correct all errors, and also that they have a low
rate (approaching zero)!

• Futhermore, they are hard to decode in an exact (maximum
likelihood) way, so we have to use an approximate decoder.

• So why would we ever use them?

•One advantage of product codes: They can correct some burst

errors — errors that come together, rather than independently.
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