## LECTURE 18:

SHANNON'S THEORM PROOF & PRODUCT CODES

November 13, 2006

# • Here's the process (equivalent to generating a random code):

1. We randomly pick *one* codeword, x, which the sender transmits.

PROVING THE THEOREM WITH RANDOM CODES

- 2. The channel randomly generates an error pattern, n, that is added to x to give the received data, y. Let the number of transmission errors (ie, ones in n) be w.
- 3. We now randomly pick the other M-1 codewords. If the Hamming distance from  ${\bf y}$  of all these codewords is greater than w, nearest-neighbor decoding will make the correct choice.
- ullet If the probability that this process leads to a decoding error is  $<\epsilon$ , then there must be some specific code with error probability  $<\epsilon$ .
- ullet For large N, the fraction of errors w/N in the transmission is very close to the crossover probability f of the channel:

$$P(f - \beta < w/N < f + \beta) \ge 1 - \epsilon/2$$

### SHANNON'S NOISY CODING THEOREM FOR THE BSC

- ullet A BSC with error probability f<1/2 has capacity  $1-H_2(f)$ .
- Theorem: For any  $\eta>0$  and  $\epsilon>0$ , there is a code (of some length N) whose rate, R, is at least  $C-\eta$ , and for which the probability that nearest neighbor decoding will fail is less than  $\epsilon$ .
- Last class we started to give a proof of this, which shows that a randomly chosen code performs quite well and hence that there must be specific codes which also perform quite well (although the proof does not construct such a code).



## DECODING WITH TYPICAL ERROR PATTERNS

• The probability that the codeword nearest to y is the correct decoding will be at least as great as the probability that the following sub-optimal decoder decodes correctly:

If there is exactly one codeword  $\mathbf{x}^*$  for which  $\mathbf{n} = \mathbf{y} - \mathbf{x}^*$  has a "typical" number of ones, then decode to  $\mathbf{x}^*$ , otherwise declare that decoding has failed.

- This sub-optimal decoder can fail in two ways:
  - The correct decoding, x, may correspond to an error pattern, n = y x, that is not "typical".
  - Some other codeword,  $\mathbf{x}'$ , may exist for which the error pattern  $\mathbf{n}'=\mathbf{y}-\mathbf{x}'$  is typical.
- ullet The total probability of decoding failure is less than the sum of the probabilities of failing in these two ways. We will try to limit each of these to  $\epsilon/2$ .

ullet We can choose N large enough to ensure the actual error pattern will be non-typical with probability less than  $\epsilon/2$ :

$$P(f - \beta < w/N < f + \beta) \ge 1 - \epsilon/2$$

- $\bullet$  We now need to limit the probability that some other codeword also corresponds to one of the J typical error patterns. J is bounded by  $I < 2^{N(H_2(f) + \beta \log_2((1-f)/f))}$
- $\bullet$  For a random codeword  $\mathbf{x}'$  (other than the one actually transmitted), the difference  $(\mathbf{x}'-\mathbf{y})$  will contain 0s and 1s that are independent and equally likely. It will be "typical" with probability  $J/2^N \ < \ 2^{-N(1-H_2(f)-\beta\log_2((1-f)/f))}$
- ullet The probability that any of the M-1 incorrect codewords will differ from  ${f y}$  by a typical error pattern is bounded by M times this. We need this bound to be less than  $\epsilon/2$ , ie

$$M 2^{-N(1-H_2(f)-\beta \log_2((1-f)/f))} < \epsilon/2$$

- Recall that for a code to be guaranteed to correct up to t errors, it's minimum distance must be at least 2t + 1.
- What's the minimum distance for the random codes used to prove the noisy coding theorem?
- ullet A random N-bit code is very likely to have minimum distance  $d \leq N/2$  if we pick two codewords randomly, about half their bits will differ. So these codes are likely *not guaranteed* to correct patterns of N/4 or more errors.
- ullet A BSC with error probability f will produce about Nf errors. So for f>1/4, we expect to get more errors than the code is guaranteed to correct. Yet we know these codes are good!
- **Conclusion:** A code may be able to correct *almost all* patterns of *t* errors even if it can't correct *all* such patterns.

#### FINISHING THE PROOF

į

- ullet Finally, we need to pick eta, M, and N so that the two types of error have probabilities less than  $\epsilon/2$ , and the rate, R is at least  $C-\eta$ .
- We will let  $M = 2^{\lceil (C \eta)N \rceil}$ , and make sure N is large enough that  $R = \lceil (C \eta)N \rceil/N < C$  [and  $P(f \beta < w/N < f + \beta) \ge 1 \epsilon/2$ ].
- $\begin{array}{c} \bullet \text{ With this value of } M \text{, we need} \\ 2^{\lceil (C-\eta)N \rceil} \ 2^{-N(1-H_2(f)-\beta \log_2((1-f)/f))} < \epsilon/2 \\ \Rightarrow 2^{-N(1-H_2(f)-\lceil (C-\eta)N \rceil/N-\beta \log_2((1-f)/f))} < \epsilon/2 \end{array}$
- The channel capacity is  $C=1-H_2(f)$ , so that  $1-H_2(f)-\lceil (C-\eta)N\rceil/N=C-R$  is positive.
- For a sufficiently small value of  $\beta$  (which we can get with large N),  $1-H_2(f)-\lceil (C-\eta)N\rceil/N-\beta\log_2((1-f)/f)$  will also be positive. With this  $\beta$  and a large enough N, the probabilities of both types of error will be less than  $\epsilon/2$ , so the total error probability will be less than  $\epsilon$ .

#### PRODUCT CODES

7

- A product code is formed from two other codes  $C_1$ , of length  $N_1$ , and  $C_2$ , of length  $N_2$ . The product code has length  $N_1N_2$ .
- ullet We can visualize the  $N_1N_2$  symbols of the product code as a 2D array with  $N_1$  columns and  $N_2$  rows.
- Definition of a product code:
   An array is a codeword of the product code if and only if
- all its rows are codewords of  $\mathcal{C}_1$
- —all its columns are codewords of  $\mathcal{C}_2^{\ \ _{N_2-K_2}}$

K<sub>1</sub> N<sub>1</sub> - K<sub>1</sub>

Bits of the message being encoded Check bits computed from the rows

Check bits computed from the columns Check bits computed from the check bits

- ullet We will assume here that  $\mathcal{C}_1$  and  $\mathcal{C}_2$  are linear codes, in which case the product code is also linear. (Can you see why?)
- The product codeword (as a matrix) is the outer product of the two original codewords (as vectors).

10

- Suppose  $C_1$  is an  $[N_1, K_1]$  code and  $C_2$  is an  $[N_2, K_2]$  code. Then their product will be an  $[N_1N_2, K_1K_2]$  code.
- Suppose  $C_1$  and  $C_2$  are in systematic form. Here's a picture of a codeword of the product code:

|                                 | $\kappa_1$                           | $N_1 - K_1$                             |
|---------------------------------|--------------------------------------|-----------------------------------------|
| К <sub>2</sub>                  | Bits of the message<br>being encoded | Check bits computed from the rows       |
| N <sub>2</sub> - K <sub>2</sub> | Check bits computed from the columns | Check bits computed from the check bits |

- The dimensionality of the product code is not more than  $K_1K_2$ , since the message bits in the upper-left determine the check bits.
- We'll see that the dimensionality equals  $K_1K_2$  by showing how to find correct check bits for any message.

- Products of even small codes have lots of check bits, so decoding directly may be infeasible.
- But if  $\mathcal{C}_1$  and  $\mathcal{C}_2$  can easily be decoded, we can decode the product code by first decoding the rows (replacing them with the decoding), then decoding the columns. (Or the other way around.)
- This will usually **not** be a nearest-neighbor decoder (and hence will be sub-optimal, assuming a BSC and equally-likely messages).

#### **ENCODING PRODUCT CODES**

ĵ

- Here's a procedure for encoding messages with a product code:
- 1. Put  $K_1K_2$  message bits into the upper-left  $K_2$  by  $K_1$  corner of the  $N_2$  by  $N_1$  array (using the outer product of the messages).
- 2. Compute the check bits for the first  $K_2$  rows, according to  $C_1$ .
- 3. Compute the check bits for all  $N_1$  columns, according to  $C_2$ .
- After this, all the columns will be codewords of  $C_2$ , since they were given the right check bits in step (3). The first  $K_2$  rows will be codewords of  $C_1$ , since they were given the right check bits in step (2). But are the last  $N_2 K_2$  rows codewords of  $C_1$ ?
- ullet Yes! Check bits are linear combinations of message bits. So the last  $N_2-K_2$  rows are linear combinations of earlier rows. Since these rows are in  $\mathcal{C}_1$ , their combinations are too.

## MINIMUM DISTANCE OF PRODUCT CODES

1:

• If  $C_1$  has minimum distance  $d_1$  and  $C_2$  has minimum distance  $d_2$ , then the minimum distance of their product is  $d_1d_2$ .

#### • Proof:

Let  $\mathbf{u}_1$  be a codeword of  $\mathcal{C}_1$  of weight  $d_1$  and  $\mathbf{u}_2$  be a codeword of  $\mathcal{C}_2$  of weight  $d_2$ . Build a codeword of the product code by putting  $\mathbf{u}_1$  in row i of the array if  $\mathbf{u}_2$  has a 1 in position i. Put zeros elsewhere. This codeword has weight  $d_1d_2$ .

The new codeword is the outer product of the vectors  $\mathbf{u}_1$  and  $\mathbf{u}_2$ .

| u1 | u2 | 0 | 1  | 0            | 0 | 0 | 1   | 0 | 0 | 0           |   |
|----|----|---|----|--------------|---|---|-----|---|---|-------------|---|
|    |    |   |    |              |   |   | 1   |   |   | :           | : |
| 0  |    |   | 1. |              |   |   |     |   |   | ļ           | : |
|    |    |   |    | ļ            |   |   |     |   |   | ļ           | ŀ |
| 0  |    |   |    | ļ            |   |   | ŀ.: |   |   | }           | ŀ |
| 0  |    |   | l. | <del> </del> |   |   | Н.  |   |   |             |   |
| 0  |    |   |    |              |   |   |     |   |   | <del></del> |   |
| 0  |    |   |    | <del> </del> |   |   |     |   |   | }           | ŀ |
| 1  |    |   | 7  | ļ            |   |   | 1   |   |   | }           | ŀ |
| 0  |    |   | •  |              |   |   | •   | - |   | · · ·       |   |
| 0  |    |   |    |              |   |   | •   |   |   | ļ           | ١ |

ullet Furthermore, any non-zero codeword must have at least this weight. It must have at least  $d_2$  rows that aren't all zero, and each such row must have at least  $d_1$  ones in it.

- Let  $\mathcal{C}$  be an [N, K] code of minimum distance d (guaranteed to correct  $t = \lfloor (d-1)/2 \rfloor$  errors).
- $\bullet$  How good is the code obtained by taking the product of  ${\mathcal C}$  with itself p times?

Length:  $N_p = N^p$ 

Rate:  $R_p = K^p/N^p = (K/N)^p \to 0$ 

Distance:  $d_p = d^p$ 

Relative distance:  $\rho_p = d_p/N_p = (d/N)^p \to 0$ 

- ullet The code can correct up to about  $d_p/2$  errors, corresponding to a proportion of errors of  $ho_p/2$ .
- ullet For a BSC with error probability f, we expect that for large N, the proportion of erroneous bits in a block will be very close to f. (The Law of Large Numbers once again.)

## Why use Products of Codes?

13

- ullet The analysis above shows that for large N, these product codes are both *unlikely* to correct all errors, and also that they have a low rate (approaching zero)!
- Futhermore, they are hard to decode in an exact (maximum likelihood) way, so we have to use an approximate decoder.
- So why would we ever use them?
- One advantage of product codes: They can correct some *burst errors* errors that come together, rather than independently.