CSC310 - Information Theory Sam Roweis

LECTURE 10:

PREDICTION BY PARTIAL MATCH (PPM)

October 16, 2006

MARKOV SOURCE MODELS: WHICH ORDER? 2

e Last week we talked about adaptive models and saw that a Markov
model of high order works well with long files, in which most of the
characters are encoded after good statistics have been gathered.

o But for small files, high-order models don’t work well — most
characters occur in contexts that have occurred only a few times
before, or never before.

o We would like to get both the advantages of:

—fast learning of a low-order model
— ultimately better prediction of a high-order model

e We can do this by varying the order we use.

e One scheme for this is the “prediction by partial match” (PPM)
model.

ADAPTIVE MARKOV MODELS BASED ON HISTORY 1

e To solve the problem that we don’t know the source model
beforehand, we can use an adaptive model, which continually
re-estimates probabilities using counts of symbols in the earlier part
of the message.

e To get beyond the assumption that symbols are independent, we
use a K -th order Markov source, in which the probability of a
symbol depends on the preceding K symbols.

e Usually we don't know the “transition probabilities” in a Markov
model, so we put these two ideas together and estimate them

adaptively, using past frequencies. Eg, for K = 2, we accumulate
frequencies in each context, F'(i, j, k), and then use probabilities

M(i, j, k) = plaglaja;) = F(i,j.k)/ Y F(i,j, k)
k/

e After encoding symbol ay, in context a;a;, we increment F'(i, j, k).

PrEDICTION BY PARTIAL MATCH: USE ALL CONTEXTS 3

e PPM maintains frequencies for characters that have been seen
before in all contexts that have occurred before, up to some
maximum order.

e Suppose we have so far encoded the string
this_is_th

o If we are using contexts up to order two, then we will record
frequencies for the following contexts:

Order 0: ()
Order 1: (t) (h) (1) (s) (L)
Order 2: (th) (hi) (is) (s_) (_1) (_t)

“BESCAPING” FROM A CONTEXT 4

e The frequency tables maintained by PPM contain only the
characters that have been seen before in that context.

Examples: if “x" has never occurred, none of the frequency tables
will have an entry for “x".
If “x" has occurred before, but not after a “t", the frequency table

for order 1 context (t) will not contain “x".

e The main idea: If we need to encode a character that doesn't
appear in the context we're using, we transmit an “escape” flag,
and switch to a lower-order context.

e What if we escape from every context? We end up in a special
“order -1" context, in which every character has a frequency of 1.

Basic PPM ENCODING METHOD

Loop until end of file:

Read the next character, c.

Let dk, di—1, ..., dy be the preceding K characters.

Set the context size, k, to the maximum, K.

While (dg, ..., di) hasn't been seen previously:
Set k to k— 1.

While & > 0 and ¢ hasn't been seen in context (dy, ..., di):
Transmit an escape flag using context (dy, ..., dj).
Set k to k — 1.

If k = —1: {Transmit ¢ using the special “order -1" context. Set k to 0. }

Else {Transmit ¢ using context (dy, ..., di).}

While k < K:
Create context (dy, ..., dy) if it doesn't exist.
Increment the count for ¢ in context (dy, ..., di).
Set k to k + 1.

FREQUENCIES IN CONTEXTS 5

e Two details about frequencies need to be resolved.
e First, what characters do we count in a context?
—We might count every character that appears following the
characters making up the context.
— We might count a character in a context only when it does not
appear in a higher-order context.
e One could argue for either way, but we'll go for the second option.
e Second, what do we use as the frequency of the “escape” symbol?

There are many possibilities. We'll just always give it a frequency of
one, no matter how many times we escape a given context.

FREQUENCIES AFTER ENCODING this_is_th

Order-1: _:lalbil--- z1
Order 0: () Escape:l t:2h:1i:2s:1_:1
Order 1:
(t) Escape:l h:2
Escape:1 i:1
Escape:l s:2
Escape:1 _:1
Escape:1 i:1 t:1

o

=
A~~~ A~~~ O~~~
ct | n B
=g ~— — — —

[¢)
=

Escape:1 i:1
Escape:1 s:1
Escape:1 _:2
Escape:1 i:1 t:1
Escape:1 s:1
Escape:1 h:l

P
n P
N N N N N N ,_)

[4)]

|
(e

t

PRrRAcCTICAL DATA STRUCTURE: “TRIE” 8

e The “trie” is a very clever data O
structure which is perfect for storing / i

the frequency tables used by PPM.
e A trie is an ordered prefix tree used to o9 e \n
store a dictionary where the keys are @

partial strings. Keys are not stored at 7 a/ \n n/5

the nodes; instead the position of @

each node in the tree shows the key. 3 12 9

e Using a trie, it is possible to very quickly access and update the
longest context seen so far which contains the current character by
descending the tree until we hit a leaf node. Looking up a key of
length ¢ takes at most O(¢) time, as opposed to a binary search
tree which is O(logn) if n counts have been stored in the tree.

o For a large number of short strings, tries are space efficient because
the keys are not stored explicitly and nodes are shared between keys.

How WELL DO THESE METHODS WORK? 10

e A version of PPM (written by Bill Teahan) and gzip applied to the
three English text files from before:

PPM
Uncompressed | Compressed | Compression | Bits per
file size file size factor character
2344 1042 2.25 3.56
20192 5903 3.42 2.34
235215 51323 458 1.75
GZIP
Uncompressed | Compressed | Compression | Bits per
file size file size factor character
2344 1160 2.02 3.96
20192 7019 2.88 2.78
235215 70030 3.36 2.38

e Speed: On the long file, PPM took 2.2 to encode, 2.3s to decode;
gzip needed only 60ms to encode, <1ms to decode.

LEARNING A VOCABULARY 9

e One reason PPM works well for files like English text is that it can
implicitly learn the vocabulary — the dictionary of words in the
language. This is because early letters of a word like “Ontario”
almost completely determine the remaining letters.

e A more direct approach is to store a dictionary explicitly.
When a word is encountered, a short code for it is sent, rather than
the letters.

e The "LZ" (for Lempel-Ziv) family of data compression algorithms
build a dictionary adaptively, based on the text seen previously.
The “gzip" and “compress” UNIX programs are examples.

MERITS OF PROBABILISTIC MODELS 11

e N-th order Markov models and PPM models cleanly separate the
model for symbol probabilities from the coding based on those prob-

abilities.

e Such models have several advantages:

— Coding can be nearly optimal (eg, using arithmetic coding).

—It's easy to try out various modeling ideas.

—You can get very good compression, if you use a good model.

e The big disadvantage:

— The coding and decoding involves operations for every symbol and
every bit, plus possibly expensive model updates, which limits how
fast these methods can be.

MERITS OF DICTIONARY METHODS 12

e Compression using adaptive dictionaries may be less elegant, but has
it's own advantages:

— Dictionary methods can be quite fast (especially at decoding),
since whole sequences of symbols are specified at once.

—The idea that the data contain many repeated strings fits many
sources quite well — eg, English text, machine-language programs,
files of names and addresses.

e The main disadvantage is that compression may not be as good as
a model based method:

— Dictionaries are inappropriate for some sources — eg, noisy images.

— Even when dictionaries work well, a good model-based method
may do better — and can’t do worse, if it uses the same modeling
ideas as the dictionary method.

AN ExXAMPLE OF LZ77 CODING 14

o Suppose we look at the past 16 characters, and look ahead at the
next 8 characters.

e After encoding the first 16 characters of the following string, we
would proceed as follows:

‘Way_over_there_i‘s_where_‘it_i s

No match with string in w ndow.
Transmt (-,0,s)

Nay_over_t here_ i s‘_where_i‘t_i S
Match 3 back with _
Transmt (3,1,w)

Way_over_t here_is_where_it_Jis
Match with 9 back with here_i
Transmt (9,6,t)

THE LZ77 SCHEME 13

e This scheme was devised by Ziv and Lempel in 1977. There are many
variants, including the method used by gzip.

e The idea of LZ77 is to use the past text as the dictionary — avoiding
the need to transmit a dictionary separately. We need a buffer of size

W that contains the previous S characters plus the following W — S
characters.

e We encode up to W — S characters at once by sending the following:

— A pointer to a past character in the buffer (an integer from 1 to
S).

— The number of characters to take from the buffer (an integer from
0 to W —S—1, or maybe more).

— The single character that follows the string taken from the buffer.

