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e We can view these improvements in terms of the trees for the
codes. Here's an example:
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[ m ag, pg = 0.30

e Two codewords have the form 01 ... but none have the form 00 ...
(ie, there's only one branch out of the 0 node).

e We can therefore improve the code by deleting the surplus node.

SOME OBSERVATIONS ABOUT INSTANTANEOUS CODES 1

CONTINUING TO IMPROVE THE EXAMPLE 3

e Suppose we have an instantaneous code for symbols aq,...,ay,
with probabilities p1,...,ps and codeword lengths I1,... ;.

e Under each of the following conditions, we can find a better
instantaneous code, i.e. one with smaller expected codeword length:

1.If py < po and l1 < ly: Swap the codewords for a1 and as.

2. If there is a codeword of the form xby, where x and y are strings
of zero or more bits, and b is a single bit, but there are no
codewords of the form 'z, where z is a string of zero or more
bits, and v’ # b:

Change all the codewords of the form zby to xy. (This improves
things if none of the p; are zero, and never makes things worse.)

e The result is the code shown below:
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e Now we note that ag, with probability 0.30, has a longer codeword
than ay, which has probability 0.11. We can improve the code by
swapping the codewords for these symbols.




THE STATE AFTER THESE IMPROVEMENTS 4

e Here's the code after this improvement:

[0 ] agps=030
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T[T | a,p, =011

e In general, after such improvements:
The most improbable symbol will have the longest codeword and
there will be at least one other codeword of this length — its
“sibling” in the tree. The second-most improbable symbol will also
have a codeword of the longest length.

REMINDER: BLOCK CODES FOR ACHIEVING THE ENTROPY 6

e Last class we proved that Huffman codes are the optimal single
symbol codes (plus a warning: top-down splitting does not work).

e We also proved Shannon'’s first theorem by showing that if we
encode long enough blocks we can get the average per-symbol
entropy as close as we want to the entropy of the source.

e Our proof used lossless codes of variable length (some blocks had
codes longer than other blocks). For ease, we used Shannon-Fano
codes, but we could also have used Huffman Codes or any other
symbol other code which is guaranteed to get within a constant of
the entropy.

e There is another way to compress down to the entropy using long
blocks; that is to use lossy codes of fixed length.

A FINAL REARRANGEMENT 5

e The codewords for the most improbable and second-most
improbable symbols must have the same length.

e The most improbable symbol's codeword also has a “sibling” of the
same length.

o We can swap codewords to make this sibling be the codeword for
the second-most improbable symbol. For the example, the result is:

P ag, Pg = 0.30
T[] a,p,=020

[ o]

| 100 ag, p; =0.14
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110 | @a,p,=012
T[] ayp, =011

ANOTHER WAY TO COMPRESS DOWN TO THE ENTROPY 7

o We get a similar result by supposing that we will always encode N
symbols into a block of exactly N R bits (fixed length code).
Can we do this in a way that is very likely to be decodable?

o Yes, for large values of V. The Law of Large Numbers (LLN) tells
us that the sequence of symbols to encode, a;, ..., a;,, is very
likely to be a “typical” one, for which

| &
~ 1821/ (piy - piy)) = & > logy(1/pi;)
=

is very close to the expectation of logy(1/p;), which is the entropy,
H(X)="> p;logs(1/p;). (See Section 4.3 of MacKay's book.)
1

e So if we encode all the sequences in this typical set in a way that
can be decoded, the code will almost always be uniquely decodable.




How BIG 1s THE TYPICAL SET? 8

e Let's define “typical” sequences as ones where
(1/N)loga(1/(piy -+~ piy)) < H(X)+n/VN

The probability of any such typical sequence will satisfy

o We scale the margin allowed above H(X) as 1/4/N since that's
how the standard deviation of an average scales. LLN (Chebychev's
inequality) then tells us that most sequences will satisfy this
condition, for some large enough value of 7.

e The total probability for all such sequences can't be greater than
one, so the number of “typical’ sequences can't be greater than

oNH(X)+nVN

EXAMPLE 10

e Example: Consider flipping a coin with pp.,qs = 0.1.
o Here are the plots of 6 vs. Hj.
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o For large N, Hs becomes almost independent of 9.

ENCODING SEQUENCES IN THE TYPICAL SET 9

e The number of “typical” sequences can't be greater than
oNH(X)+nV/N

e We will be able to encode these sequences in N R bits if
NR > NH(X)+nVN. (Using any arbitrary code in which we
assign each typical sequence to one of the oNR codes.)
If R > H(X), this will be true if N is sufficiently large.

e How often will a sequence of length N fail to be in the typical set?
To answer this, we need to know how many sequences live in the
upper “tail" of the distribution of (1/N)loga(1/(pi; - - piy))-

o We can define H5(X ™) to be average codeword length needed for
the typical set to leave out only a fraction ¢ of possible sequences.
Formally, it is the logarithm of the minimum number of sequences
in the N/ extension of X whose probabilities sum to at least 1 — 4.

ANOTHER STATEMENT OF SHANNON’S THEOREM 11

e Let X be an ensemble with entropy H(X) = H bits.

e Given € > (0 and 0 < < 1, there exists a positive integer V() such
that for N > N,

1

N

e Both sides of the inequality are interesting. The first part tells us
that even if the probability of error § is extremely small, the average
number of bits per symbol %H(g(XN) needed to specify a long
N-symbol string with vanishingly small error probability does not
have to exceed H + € bits. We need to have only a tiny tolerance

for error, and the number of bits required drops significantly from
Hy(X) to (H +¢).

Hy(X™M) - H| <e.




ANOTHER STATEMENT OF SHANNON’S THEOREM 12

e Let X be an ensemble with entropy H(X) = H bits.

e Given € > (0 and 0 < < 1, there exists a positive integer N such
that for N > N,

1

N

e What happens if we are yet more tolerant to compression errors?
The second part tells us that even if 0 is very close to 1, so that
errors are made most of the time, the average number of bits per
symbol needed must still be at least H — ¢ bits.

Hy(X™M) - H| <e.

e These two extremes tell us that regardless of our specific allowance
for error, the number of bits per symbol needed is H bits; no more
and no less.

AN END AND A BEGINNING 13

Shannon's Noiseless Coding Theorem is mathematically satisfying.
From a practical point of view, though, we still have two problems:

e How can we compress data to nearly the entropy in practice? The
number of possible blocks of size N is IV — huge when N is large.
And N sometimes must be large to get close to the entropy by
encoding blocks of size V.

Solution: Instead of symbol codes or block codes, we will introduce a
more powerful set of codes called stream codes. The most important
example is known as arithmetic coding (coming next).

e Where do the symbol probabilities p1, ..., p; come from? And are
symbols really independent, with known, constant probabilities? This
is the problem of source modeling.

Solution: adaptive methods, which update their estimates of the
source model as they encode more and more data.
(We'll see these shortly.)




