
Lecture 5:

Sam Roweis

September 26, 2005

Reminder: Entropy and Optimal Codes

• Last class we introduced the entropy H =
∑

i pi log(1/pi) of a
source which provides a hard lower bound on the average
per-symbol encoding length for any decodable code.

• We also learned about Huffman’s Algorithm which constructs an
“optimal” symbol code for any source.

• But Huffman Codes may be as much as one bit worse than the
entropy on average. To get closer to lower limit of the entropy, we
are going to consider block coding in which we encode several
adjacent source symbols together (called the extension of a source).

• This introduces some decoding delay, since we can’t decode any
any member of the block until the code for the entire block is
received, but it gets us closer to the entropy in performance.

• First, let’s talk a bit more about entropy, then let’s see why
Huffman codes are optimal, then we can go back to block coding.

Entropy as a measure of surprise

• What does information do? It removes uncertainty. Information
Conveyed = Uncertainty Removed = Surprise Yielded.

• How should we quantify information/uncertainty/surprise? Here are
some properties any function h(p(event)) should possess:

1. h(1) = 0 (no surprise for certain events)

2. h(0) = ∞ (infinite surprise for impossible events)

3. pi > pj ⇒ h(pi) < h(pj) (higher prob. means less surprise)

4. x, y independent ⇒ h(p(xi&yj)) = h(p(xi)) + h(p(xj)).
(surprise is additive for independent events)

5. h(·) is continuous (small change in prob, small change in surprise)

• What functions h(·) satisfy all the requirements above?
The only consistent solution is h(p) = −a logb(p).
By convention, we chose a = 1, b = 2 which sets the units to bits.

Proving that Binary Huffman Codes are Optimal

• We can prove that the binary Huffman code procedure produces
optimal codes by induction on the number of source symbols, I.

• For I = 2, the code produced is obviously optimal —
you can’t do better than using one bit to code each symbol.

• For I > 2, we assume that the procedure produces optimal codes
for any alphabet of size I − 1 (with any symbol probabilities),
and then prove that it does so for alphabets of size I as well.

• So, to start with, suppose the Huffman procedure produces optimal
codes for alphabets of size I − 1.

• Let L be the expected codeword length of the code produced by
the procedure when it is used to encode the symbols a1, . . . , aI ,
having probabilities p1, . . . , pI . Without loss of generality, let’s
assume that pi ≥ pI−1 ≥ pI for all i ∈ {1, . . . , I − 2}.

The Induction Step

• The recursive call in the procedure will have produced a code for
symbols a1, . . . , aI−2, a′, having probabilities p1, . . . , pI−2, p′,
with p′ = pI−1 + pI . By the induction hypothesis, this code is
optimal. Let its average length be L′.

• Suppose some other instantaneous code for a1, . . . , aI had
expected length less than L. We can modify this code so that the
codewords for aI−1 and aI are “siblings” (ie, they have the forms
z0 and z1) while keeping its average length the same, or less.

• Let the average length of this modified code be L̂, which must also
be less than L. From this modified code, we can produce another
code for a1, . . . , aI−2, a′. We keep the codewords for
a1, . . . , aI−2 the same, and encode a′ as z.

Let the average length of this code be L̂′.

The Induction Step (Conclusion)

• We now have two codes for a1, . . . , aI and two for
a1, . . . , aI−2, a′. The average lengths of these codes satisfy the
following equations:

L = L′ + pI−1 + pI

L̂ = L̂′ + pI−1 + pI

Why? The codes for a1, . . . , aI are like the codes for
a1, . . . , aI−2, a′, except that one symbol is replaced by two,
whose codewords are one bit longer. This one additional bit is
added with probability p′ = pI−1 + pI .

• Since L′ is the optimal average length, L′ ≤ L̂′. From these
equations, we then see that L ≤ L̂, which contradicts the
supposition that L̂ < L.

• The Huffman procedure therefore produces optimal codes for
alphabets of size I. By induction, this is true for all I.

Won’t top-down splitting work just as well?

• Shannon & Fano had another technique for constructing a prefix
code, other than rounding up log 1/pi to get li.

• They arranged the source symbols in order from most probable to
least probable, and then divided into two sets whose total
probabilities are as close as possible to being equal.

• All symbols then have the first digits of their codes assigned;
symbols in the first set receive “0” and symbols in the second set
receive “1”. As long as any sets with more than one member
remain, the same process is repeated on those sets, to determine
successive digits of their codes.

• When a set has been reduced to one symbol, of course, this means
the symbol’s code is complete and furthermore it is guaranteed to
not form the prefix of any other symbol’s code.

Shannon-Fano top-down splitting

• Example:
Symbol probabilities
(p1 = .35, p2 = .17, p3 = .17, p4 = .16, p5 = .15).
First split (.35, .17) → 0; (.17, .16, .15) → 1.
Second split: .35 → 00; .17 → 01.
Third split: .17 → 10; (.16, .15) → 11.
Final split: .16 → 110; .15 → 111.

Top-down splitting is sub-optimal

• The above algorithm works, and it produces fairly efficient
variable-length encodings.

• When the two smaller sets produced by a partitioning happen to be
exactly equal in probabilitity, then the one bit of information used
to distinguish them is used most efficiently.

• Unfortunately, Shannon-Fano top-down splitting does not always
produce optimal prefix codes: the code we obtained above was
{00, 01, 10, 110, 111} which has average L = 2.31 bits/symbol.

• Huffman’s algorithm produces a code of {0, 111, 110, 101, 100}
which has average L = 2.30 bits/symbol.

• Why, intuitively, does Huffman’s algorithm work?

Shannon’s Noiseless Coding Theorem

• By using extensions of the source, we can compress arbitrarily close

to the entropy! Formally:

For any desired average length per symbol, R, that is greater
than the binary entropy, H(X), there is a value of N for
which a uniquely decodable binary code for XN exists that
has expected length less than NR.

• Consider coding the N -th extension of a source whose symbols
have probabilities p1, . . . , pI , using an binary Shannon-Fano code.

• The Shannon-Fano code for blocks of N symbols will have expected
codeword length, LN , no greater than 1 + H(XN) = 1 + NH(X).

• The expected codeword length per original source source symbol

will therefore be no greater than LN
N =

1+NH(X)
N = H(X) + 1

N .

• By choosing N to be large enough, we can make this as close to
the entropy, H(X), as we wish.

Another Way to Compress Down to the Entropy

• We get a similar result by supposing that we will always encode N
symbols into a block of exactly NR bits.
Can we do this in a way that is very likely to be decodable?

• Yes, for large values of N . The Law of Large Numbers (LLN) tells
us that the sequence of symbols to encode, ai1, . . . , aiN , is very
likely to be a “typical” one, for which

1

N
log2(1/(pi1 · · · piN)) =

1

N

N∑

j=1

log2(1/pij)

is very close to the expectation of log2(1/pi), which is the entropy,
H(X) =

∑
i

pi log2(1/pi). (See Section 4.3 of MacKay’s book.)

• So if we encode all the sequences in this typical set in a way that
can be decoded, the code will almost always be uniquely decodable.

How Big is the Typical Set?

• Let’s define “typical” sequences as ones where

(1/N) log2(1/(pi1 · · · piN)) ≤ H(X) + η/
√

N

The probability of any such typical sequence will satisfy

pi1 · · · piN ≥ 2−NH(X)−η
√

N

• We scale the margin allowed above H(X) as 1/
√

N since that’s
how the standard deviation of an average scales. LLN (Chebychev’s
inequality) then tells us that most sequences will satisfy this
condition, for some large enough value of η.

• The total probability for all such sequences can’t be greater than
one, so the number of “typical” sequences can’t be greater than

2NH(X)+η
√

N

• We will be able to encode these sequences in NR bits if
NR ≥ NH(X) + η

√
N . If R > H(X), this will be true if N is

sufficiently large.

Some Observations about Instantaneous Codes

• Suppose we have an instantaneous code for symbols a1, . . . , aI ,
with probabilities p1, . . . , pI and codeword lengths l1, . . . , lI .

• Under each of the following conditions, we can find a better
instantaneous code, i.e. one with smaller expected codeword length:

1. If p1 < p2 and l1 < l2: Swap the codewords for a1 and a2.

2. If there is a codeword of the form xby, where x and y are strings
of zero or more bits, and b is a single bit, but there are no
codewords of the form xb′z, where z is a string of zero or more
bits, and b′ 6= b:
Change all the codewords of the form xby to xy. (This improves
things if none of the pi are zero, and never makes things worse.)

The Improvements in Terms of Trees

• We can view these improvements in terms of the trees for the
codes. Here’s an example:

11

010

011

100

101

110

111

NULL

a , p = 0.111 1

a , p = 0.20

a , p = 0.14

a , p = 0.12

a , p = 0.13

a , p = 0.30

2 2

3

4

5

6

3

4

5

6

10

0

1

01

• Two codewords have the form 01 . . . but none have the form 00 . . .
(ie, there’s only one branch out of the 0 node).

• We can therefore improve the code by deleting the surplus node.

Continuing to Improve the Example

• The result is the code shown below:

10

11

100

101

110

111

NULL

00

01 a , p = 0.20

a , p = 0.14

a , p = 0.12

a , p = 0.13

a , p = 0.30

2 2

3

4

5

3

4

5

66

1

a , p = 0.111 1
0

• Now we note that a6, with probability 0.30, has a longer codeword
than a1, which has probability 0.11. We can improve the code by
swapping the codewords for these symbols.

The State After These Improvements

• Here’s the code after this improvement:

101

110

111

NULL

00

01 a , p = 0.20

a , p = 0.14

a , p = 0.12

a , p = 0.13

2 2

3

4

5

3

4

5

6a , p = 0.306

a , p = 0.111 1

100

0

1

10

11

• In general, after such improvements:
The most improbable symbol will have the longest codeword and
there will be at least one other codeword of this length — its
“sibling” in the tree. The second-most improbable symbol will also
have a codeword of the longest length.

A Final Rearrangement

• The codewords for the most improbable and second-most
improbable symbols must have the same length.

• The most improbable symbol’s codeword also has a “sibling” of the
same length.

• We can swap codewords to make this sibling be the codeword for
the second-most improbable symbol. For the example, the result is:

101

110

111

NULL

00

01 a , p = 0.20

a , p = 0.14

2 2

3 3

6a , p = 0.306

a , p = 0.111 1

a , p = 0.13

a , p = 0.12

55

44

100

0

1

10

11

An End and a Beginning

Shannon’s Noiseless Coding Theorem is mathematically satisfying. From
a practical point of view, though, we still have two problems:

• How can we compress data to nearly the entropy in practice?

The number of possible blocks of size N
is IN — huge when N is large. And N sometimes must be large to
get close to the entropy by encoding blocks of size N .

One solution: A technique known as arithmetic coding.

• Where do the symbol probabilities p1, . . . , pI come from? And are
symbols really independent, with known, constant probabilities?

This is the problem of source modeling.

