
Lecture 2:

Uniquely Decodable and Instantaneous Codes

Sam Roweis

September 15, 2005

Recall: Mathematical Setup

• Start with a sequence of symbols X = X1, X2, . . . , XN from a
finite source alphabet AX = {a1, a2, . . .}.

• Examples: AX = {A, B, . . . , Z, }; AX = {0, 1, 2, . . . , 255};
AX = {C, G, T, A}; AX = {0, 1}.

• Encoder: outputs a new sequence Z = Z1, Z2, . . . , ZM
(using a possibly different code alphabet AZ).

• Decoder tries to convert Z back into X.

• In compression, the encoder tries to remove source redundancy.

• In noisy channel coding, the encoder tries to protect the message
against transmission errors.

• We almost always use AZ = 0, 1 (e.g. computer files, digital
communication) but the theory can be generalized to any finite set.

Lossless Data Compression

• Let’s focus on the lossless data compression problem for now, and
not worry about noisy channel coding for now. In practice these
two problems are handeled separately, i.e. we first design an
efficient code for the source (removing source redundancy) and
then (if necessary) we design a channel code to help us transmit
the source code over the channel (adding redundancy).

• Assumptions (for now):

1. the channel is perfectly noiseless
i.e. the receiver sees exactly the encoder’s output

2. we always require the output of the decoder to exactly match the
original sequence X.

3. X is generated according to a fixed probabilistic model, p(X)

• We will measure the quality of our compression scheme (called a
code) by examining the average length of the encoded string Z,
averaged over p(X).

Encoding One Symbol at a Time

• To begin with, let’s think about encoding one symbol Xi at a time,
using a fixed code that defines a mapping of each source symbol
into a finite sequence of code symbols called a codeword.
(Later on we will consider encoding blocks of symbols together.)

• We will encode a sequence of source symbols X by concatenating
the codewords of each.

• This is called a symbol code.

• E.g. source alphabet is AX = {C, G, T, A}. One possible code:
C → 0; G → 10; T → 110; A → 1110
So we would have CCAT → 001110110.

• We require that the mapping be such that we can decode this
sequence, no matter what the original symbols were.



Notation for Sequences & Codes

• AX and AZ are the source and code alphabets.

• A+
X and A+

Z denote sequences of one or more symbols
from the source or code alphabets.

• A symbol code, C, is a mapping AX → A+
Z .

We use c(x) to denote the codeword to which C maps x.

• We use concatenation to extend this to a mapping for the extended

code, C+ : A+
X → A+

Y :

c+(x1x2 · · · xN ) = c(x1)c(x2) · · · c(xN )

i.e., we code a string of symbols by just stringing together the
codes for each symbol.

• I’ll sometimes also use C to denote the set of all legal codewords:
{w | w = C(a) for some a ∈ AX}.

What Codes are Decodable?

• We only want to consider codes that can be successfully decoded.

• To define what that means, we need to set some rules of the game:

1. How does the channel terminate the transmission?
(e.g. it could explicitly mark the end, it could send only 0s after
the end, it could send random garbadge after the end,...)

2. How soon do we require a decoded symbol to be known?
(e.g. “instantaneously” – as soon as the codeword for the symbol
is received, within a fixed delay of when its codeword is received,
not until the entire message has been received,...)

• Easiest case: assume the end of the transmission is explicitly
marked, and don’t require any symbols to be decoded until the
entire transmission has been received.

• Hardest case: require instantaneous decoding, and thus it doesn’t
matter what happens at the end of the transmission.

Uniquely Decodable & Instantaneous Codes

• A code is uniquely decodable if the mapping C+ : A+
X → A+

Z is

one-to-one, i.e. ∀ x and x′ in A+
X , x 6= x′ ⇒ c+(x) 6= c+(x′)

• A code is obviously not uniquely decodable if two symbols have the
same codeword — ie, if c(ai) = c(aj) for some i 6= j — so we’ll
usually assume that this isn’t the case.

• A code is instantaneously decodable if any source sequences x and
x′ in A+ for which x is not a prefix of x′ have encodings z = C(x)
and z′ = C(x′) for which z is not a prefix of z′.
Otherwise, after receiving z, we wouldn’t yet know whether the
message starts with z or with z′.

• Instantaneous codes are also called prefix-free codes

or just prefix codes.

Examples

Code A Code B Code C Code D

a 10 0 0 0

b 11 10 01 01

c 111 110 011 11

Code A: Not uniquely decodable
Both bbb and cc encode as 111111

Code B: Instantaneously decodable
End of each codeword marked by 0

Code C: Decodable with one-symbol delay
End of codeword marked by following 0

Code D: Uniquely decodable, but with unbounded delay:

011111111111111 decodes as accccccc
01111111111111 decodes as bcccccc



More Examples

Code E Code F Code G

a 100 0 0

b 101 001 01

c 010 010 011

d 011 100 1110

Code E: Instantaneously decodable
All codewords same length

Code F: Not uniquely decodable
e.g. baa,aca,aad all encode as 00100

Code G: Decodable with six-symbol delay.
(Try to work out why.)

A Check for Instantaneous Codes

• A code is instantaneous if and only if no codeword is a prefix of
some other codeword. (ie if Ci is a codeword, CiZ cannot be a
codeword for any Z). This is a prefix code.

• Proof:
(⇒) If codeword C(ai) is a prefix of codeword C(aj), then the
encoding of the sequence x = ai is obviously a prefix of the
encoding of the sequence x′ = aj.
(⇐) If the code is not instantaneous, let z = C(x) be an encoding
that is a prefix of another encoding z′ = C(x′), but with x not a
prefix of x′, and let x be as short as possible.
The first symbols of x and x′ can’t be the same, since if they were,
we could drop these symbols and get a shorter instance. So these
two symbols must be different, but one of their codewords must be
a prefix of the other.

A Check for Unique Decodability

• The Sardinas-Patterson Theorem tells us how to check whether a
code is uniquely decodable.

• Let C be the set of codewords. Define C0 = C.
For n > 0, define

Cn = {w ∈ A+
X | uw = v where u ∈ C, v ∈ Cn−1

or u ∈ Cn−1, v ∈ C}

Finally, define

C∞ = C1 ∪ C2 ∪ C3 ∪ · · ·

• Theorem: the code C is uniquely decodable if and only if
C and C∞ are disjoint.

• We won’t both much with this theorem,
since as we’ll see it isn’t of much practical use.

Existence of Codes

• Since we hope to compress data, we would like codes that are
uniquely decodable and whose codewords are short.

• Also, we’d like to use instantaneous codes where possible since they
are easiest and most efficient to decode.

• If we could make all the codewords really short, life would be really
easy. Too easy. Why?
Because there are only a few possible short codewords and we can’t
reuse them or else our code wouldn’t be decodable.

• Instead, making some codewords short will require that other
codewords be long, if the code is to be uniquely decodable.

•Question 1: What sets of codeword lengths are possible?

•Question 2: Can we always manage to use instantaneous codes?



McMillan’s Inequality

• There is a uniquely decodable binary code with
codewords having lengths l1, . . . , lI if and only if

I
∑

i=1

1

2li
≤ 1

• E.g. there is a uniquely decodable binary code
with lengths 1, 2, 3, 3, since

1/2 + 1/4 + 1/8 + 1/8 = 1

• An example of such a code is {0, 01, 011, 111}.

• There is no uniquely decodable binary code
with lengths 2, 2, 2, 2, 2, since

1/4 + 1/4 + 1/4 + 1/4 + 1/4 > 1

Kraft’s Inequality

• There is an instantaneous binary code with
codewords having lengths l1, . . . , lI if and only if

I
∑

i=1

1

2li
≤ 1

• This is exactly the same condition as McMillan’s inequality!

• E.g. there is an instantaneous binary code
with lengths 1, 2, 3, 3, since

1/2 + 1/4 + 1/8 + 1/8 = 1

• An example of such a code is {0, 10, 110, 111}.

• There is an instantaneous binary code with lengths 2, 2, 2, since

1/4 + 1/4 + 1/4 < 1

• An example of such a code is {00, 10, 01}.

We Can Always Use Instantaneous Codes

• Since instantaneous codes are a proper subset of uniquely decodable
codes, we might have expected that the condition for existence of a
u.d. code to be less stringent than that for instantaneous codes.

• But combining Kraft’s and McMillan’s inequalities, we conclude
that there is an instantaneous binary code with lengths l1, . . . , lI
if and only if there is a uniquely decodable code with these lengths.

• Implication: There is probably no practical benefit to using
uniquely decodable codes that aren’t instantaneous.

•Happy consequence: We don’t have to worry about how the
encoding is terminated (if at all) or about decoding delays (at least
for symbol codes; for block codes this will change).

Proving the Two Inequalities

• We can prove both Kraft’s and McMillan’s inequality by proving
that for any set of lengths, l1, . . . , lI , for binary codewords:

A) If
∑I

i=1 1/2li ≤ 1, we can construct an instantaneous code
with codewords having these lengths.

B) If
∑I

i=1 1/2li > 1, there is no uniquely decodable code with
codewords having these lengths.

• (A) is half of Kraft’s inequality.
(B) is half of McMillan’s inequality.

• Using the fact that instantaneous codes are uniquely decodable,
(A) gives the other half of McMillan’s inequality, and (B) gives the
other half of Kraft’s inequality.

• To do this, we’ll introduce a helpful way of thinking about codes
as...trees!



Visualizing Prefix Codes as Trees

• We can view codewords of an instantaneous (prefix) code as
leaves of a tree.

• The root represents the null string; each level corresponds to
adding another code symbol.

• Here is the tree for a code with codewords 0, 11, 100, 101:

0

1

10

11

101

NULL

100

Extending the Tree to Maximum Depth

• We can extend the tree by filling in the subtree underneath every
actual codeword, down to the depth of the longest codeword.

• Each codeword then corresponds to either a leaf or a subtree.

• Previous tree extended, with each codeword’s leaf or subtree circled:

0

1

00

01

10

11

000

001

010

011

100

101

110

111

NULL

• Short codewords occupy more of the tree. For a binary code, the
fraction of leaves taken by a codeword of length l is 1/2l.

Constructing Instantaneous Codes

• Suppose that Kraft’s Inequality holds:

I
∑

i=1

1

2li
≤ 1

• Order the lengths so l1 ≤ · · · ≤ lI .

• Q: In the binary tree with depth lI , how can we allocate subtrees to
codewords with these lengths?

• A: We go from shortest to longest, i = 1, . . . , I:

1) Pick a node at depth li that isn’t in a subtree previously used,
and let the code for codeword i be the one at that node.

2) Mark all nodes in the subtree headed by the node just picked as
being used, and not available to be picked later.

• Let’s look at an example...

Building an Instantaneous Code

• Let the lengths of the codewords be {1,2,3,3}.

• First check: 2−1 + 2−2 + 2−3 + 2−3 ≤ 1.

• Our final code can be read from the leaf nodes: {1,00,010,011}.

0 1

0 1

0 1

00

0 01 10 1

1

NULL



Construction Will Always Be Possible

• Q: Will there always be a node available in step (1) above?

• If Kraft’s inequality holds, we will always be able to do this.

• To begin, there are 2lb nodes at depth lb.

• When we pick a node at depth la, the number of nodes that
become unavailable at depth lb (assumed not less than la) is 2lb−la.

• When we need to pick a node at depth lj, after having picked
earlier nodes at depths li (with i < j and li ≤ lj), the number of
nodes left to pick from will be

2lj −

j−1
∑

i=1

2lj−li = 2lj



1 −

j−1
∑

i=1

1

2li



 > 0

Since
j−1
∑

i=1
1/2li <

I
∑

i=1
1/2li ≤ 1, by assumption.

• This proves (A).

UD Codes Must Obey the Inequality

• Let l1 ≤ · · · ≤ lI be the codeword lengths. Define K =
∑I

i=1
1
2li

.

• For any positive integer n, we sum over all possible combinations of
values for i1, . . . , in in {1, . . . , I}.

Kn =
∑

i1,...,in

1

2li1
× · · · ×

1

2lin

• We rewrite this in terms of possible values for j = li1 + · · · + lin:

Kn =

nlI
∑

j=1

Nj,n

2j

Nj,n is the # of sequences of n codewords with total length j.

• If the code is uniquely decodable, Nj,n ≤ 2j, so Kn ≤ nlI ,
which for big enough n is possible only if K ≤ 1.

• This proves (B). (For instantaneous codes, the intuition is that
short codes “use up” their subtree.)


