LECTURE 20:

SHANNON'S THEORM PROOF & PRODUCT CODES

November 23, 2005

LECTURE 20:

SHANNON'S NOISY CODING THEOREM FOR THE BSC

- Consider a BSC with error probability f < 1/2. This channel has capacity $C = 1 H_2(f)$.
- ullet For any desired closeness to capacity, $\eta>0$, and for any desired limit on error probability, $\epsilon>0$, there is a code of some length N whose rate, R, is at least $C-\eta$, and for which the probability that nearest neighbor decoding will decode a codeword incorrectly is less than ϵ .
- Last class we started to give a proof of this, which more-or-less follows the proof for general channels in Chapter 10 of MacKay's book.
- The idea is based on showing that a *randomly chosen code* performs quite well and hence that there must be *specific codes* which also perform quite well.

ullet Rather than showing how to construct a specific code for given values of f, η , and ϵ , we will consider choosing a code of a suitable length, N, and rate $\log_2(M)/N$, by picking M codewords at random from \mathbb{Z}_2^N .

- We consider the following scenario:
- 1. We randomly pick a code, C, which we give to both the sender and the receiver.
- 2. The sender randomly picks a codeword $\mathbf{x} \in \mathcal{C}$, and transmits it through the channel.
- 3. The channel randomly generates an error pattern, ${\bf n}$, and delivers ${\bf y}={\bf x}+{\bf n}$ to the receiver.
- 4. The receiver decodes ${\bf y}$ to a codeword, ${\bf x}^*$, that is nearest to ${\bf y}$ in Hamming distance.
- If the probability that this process leads to $x^* \neq x$ is $< \epsilon$, then there must be some specific code with error probability $< \epsilon$.

REARRANGING THE ORDER OF CHOICES

3

- It will be convenient to rearrange the order in which random choices are made, as follows:
- 1. We randomly pick *one* codeword, x, which is the one the sender transmits.
- 2. The channel randomly generates an error pattern, n, that is added to x to give the received data, y. Let the number of transmission errors (ie, ones in n) be w.
- 3. We now randomly pick the other M-1 codewords. If the Hamming distance from ${\bf y}$ of all these codewords is greater than w, nearest-neighbor decoding will make the correct choice.
- The probability of the decoder making the wrong choice here is the same as before.

 The probability that the codeword nearest to y is the correct decoding will be at least as great as the probability that the following sub-optimal decoder decodes correctly:

If there is exactly one codeword \mathbf{x}^* for which $\mathbf{n} = \mathbf{y} - \mathbf{x}^*$ has a typical number of ones, then decode to \mathbf{x}^* , otherwise declare that decoding has failed.

- This sub-optimal decoder can fail in two ways:
- The correct decoding, x, may correspond to an error pattern, n = y x, that is not typical.
- Some other codeword, \mathbf{x}' , may exist for which the error pattern $\mathbf{n}' = \mathbf{y} \mathbf{x}'$ is typical.

• The number of typical error patterns is

$$J < 2^{N(H_2(f) + \beta \log_2((1-f)/f))}$$

- ullet For a random codeword, x, other than the one actually transmitted, the corresponding error pattern given y will contain 0s and 1s that are independent and equally likely.
- The probability that one such codeword will produce a typical error pattern is therefore

$$J/2^N < 2^{-N(1-H_2(f)-\beta\log_2((1-f)/f))}$$

ullet The probability that any of the other M-1 codewords will correspond to a typical error pattern is bounded by M times this. We need this to be less than $\epsilon/2$, ie

$$M 2^{-N(1-H_2(f)-\beta \log_2((1-f)/f))} < \epsilon/2$$

BOUNDING THE PROBABILITY OF FAILURE (I)

- The total probability of decoding failure is less than the sum of the probabilities of failing in these two ways. We will try to limit each of these to $\epsilon/2$.
- ullet We can choose N to be big enough that

$$P(f - \beta < w/N < f + \beta) > 1 - \epsilon/2$$

This ensures that the actual error pattern will be non-typical with probability less than $\epsilon/2$.

• We now need to limit the probability that some other codeword also corresponds to a typical error pattern.

FINISHING THE PROOF

- ullet Finally, we need to pick eta, M, and N so that the two types of error have probabilities less than $\epsilon/2$, and the rate, R is at least $C-\eta$.
- ullet We will let $M=2^{\lceil (C-\eta)N \rceil}$, and make sure N is large enough that $R=\lceil (C-\eta)N \rceil/N < C.$
- \bullet With this value of M, we need

$$2^{\lceil (C-\eta)N \rceil} 2^{-N(1-H_2(f)-\beta \log_2((1-f)/f))} < \epsilon/2$$

$$\Rightarrow 2^{-N(1-H_2(f)-\lceil (C-\eta)N \rceil/N-\beta \log_2((1-f)/f))} < \epsilon/2$$

- The channel capacity is $C=1-H_2(f)$, so that $1-H_2(f)-\lceil (C-\eta)N\rceil/N=C-R$ is positive.
- For a sufficiently small value of β , $1-H_2(f)-\lceil (C-\eta)N\rceil/N-\beta\log_2((1-f)/f)$ will also be positive. With this β and a large enough N, the probabilities of both types of error will be less than $\epsilon/2$, so the total error probability will be less than ϵ .

- ullet Recall that for a code to be guaranteed to correct up to t errors, it's minimum distance must be at least 2t+1.
- What's the minimum distance for the random codes used to prove the noisy coding theorem?
- ullet A random N-bit code is very likely to have minimum distance $d \leq N/2$ if we pick two codewords randomly, about half their bits will differ. So these codes are likely *not guaranteed* to correct patterns of N/4 or more errors.
- ullet A BSC with error probability f will produce about Nf errors. So for f>1/4, we expect to get more errors than the code is guaranteed to correct. Yet we know these codes are good!
- **Conclusion:** A code may be able to correct *almost all* patterns of *t* errors even if it can't correct *all* such patterns.

- Suppose C_1 is an $[N_1, K_1]$ code and C_2 is an $[N_2, K_2]$ code. Then their product will be an $[N_1N_2, K_1K_2]$ code.
- Suppose \mathcal{C}_1 and \mathcal{C}_2 are in systematic form. Here's a picture of a codeword of the product code:

	1	1 1
К2	Bits of the message being encoded	Check bits computed from the rows
N ₂ - K ₂	Check bits computed from the columns	Check bits computed from the check bits

- The dimensionality of the product code is not more than K_1K_2 , since the message bits in the upper-left determine the check bits.
- We'll see that the dimensionality equals K_1K_2 by showing how to find correct check bits for any message.

PRODUCT CODES

Ĉ

- A product code is formed from two other codes C_1 , of length N_1 , and C_2 , of length N_2 . The product code has length N_1N_2 .
- ullet We can visualize the N_1N_2 symbols of the product code as a 2D array with N_1 columns and N_2 rows.
- Definition of a product code:
 An array is a codeword of the product code if and only if
 - -all its rows are codewords of \mathcal{C}_1
 - all its columns are codewords of \mathcal{C}_2
- ullet We will assume here that \mathcal{C}_1 and \mathcal{C}_2 are linear codes, in which case the product code is also linear. (Can you see why?)

ENCODING PRODUCT CODES

11

- \bullet Here's a procedure for encoding messages with a product code:
- 1. Put K_1K_2 message bits into the upper-left K_2 by K_1 corner of the N_2 by N_1 array.
- 2. Compute the check bits for the first K_2 rows, according to \mathcal{C}_1 .
- 3. Compute the check bits for the N_1 columns, according to \mathcal{C}_2 .
- After this, all the columns will be codewords of \mathcal{C}_2 , since they were given the right check bits in step (3). The first K_2 rows will be codewords of \mathcal{C}_1 , since they were given the right check bits in step (2). But are the *last* $N_2 K_2$ rows codewords of \mathcal{C}_1 ?
- Yes! Check bits are linear combinations of message bits. So the last $N_2 K_2$ rows are linear combinations of earlier rows. Since these rows are in \mathcal{C}_1 , their combinations are too.

ullet If \mathcal{C}_1 has minimum distance d_1 and \mathcal{C}_2 has minimum distance d_2 , then the minimum distance of their product is d_1d_2 .

• Proof:

Let \mathbf{u}_1 be a codeword of \mathcal{C}_1 of weight d_1 and \mathbf{u}_2 be a codeword of \mathcal{C}_2 of weight d_2 . Build a codeword of the product code by putting \mathbf{u}_1 in row i of the array if \mathbf{u}_2 has a 1 in position i. Put zeros elsewhere. This codeword has weight d_1d_2 .

The new codeword is the outer product of the vectors \mathbf{u}_1 and \mathbf{u}_2 .

ullet Furthermore, any non-zero codeword must have at least this weight. It must have at least d_2 rows that aren't all zero, and each such row must have at least d_1 ones in it.

• Let $\mathcal C$ be an [N,K] code of minimum distance d (guaranteed to correct $t=\lfloor (d-1)/2 \rfloor$ errors).

 \bullet How good is the code obtained by taking the product of ${\mathcal C}$ with itself p times?

Length: $N_p = N^p$

Rate: $R_p = K^p/N^p = (K/N)^p \rightarrow 0$

Distance: $d_p = d^p$

Relative distance: $\rho_p = d_p/N_p = (d/N)^p \to 0$

• The code can correct up to about $d_p/2$ errors, corresponding to a proportion of errors of $\rho_p/2$.

ullet For a BSC with error probability f, we expect that for large N, the proportion of erroneous bits in a block will be very close to f. (The Law of Large Numbers once again.)

DECODING PRODUCT CODES

13

- ullet Products of even small codes (eg, [7,4] Hamming codes) have lots of check bits, so decoding by building a syndrome table may be infeasible.
- But if C_1 and C_2 can easily be decoded, we can decode the product code by first decoding the rows (replacing them with the decoding), then decoding the columns. (Or the other way around.)
- This will usually **not** be a nearest-neighbor decoder (and hence will be sub-optimal, assuming a BSC and equally-likely messages).

Why use Products of Codes?

15

- ullet The analysis above shows that for large N, these product codes are both *unlikely* to correct all errors, and also that they have a low rate (approaching zero)!
- So why would we ever use them?
- One advantage of product codes: They can correct some *burst errors* errors that come together, rather than independently.