
CSC310 – Information Theory Sam Roweis

Lecture 16:

Equivalent Codes & Systematic Forms

November 9, 2005

Reminder: Dealing with Long Blocks 1

• Recall that Shannon’s second theorem tells us that for any noisy
channel, there is some code which allows us to achieve error free
transmission at a rate up to the capacity.

• However, this might require us to encode our message in very long
blocks. Why?

• Intuitively it is because we need to add just the right fraction of
redundancy; too little and we won’t be able to correct the erorrs,
too much and we won’t achieve the full channel capacity.

• For many real world situations, the block sizes used are thousands
of bits, e.g. K = 1024 or K = 4096.

Potential Problems with Large Blocks 2

• Using very large blocks could potentially cause some serious
practical problems with storage/retrieval of codewords.

• In particular, if we are encoding blocks of K bits, our code will
have 2K codewords. For K ≈ 1000 this is a huge number!

• How could we even store all the codewords?

• How could we retrieve (look up) the N bit codeword corresponding
to a given K bit message?

• How could we check if a given block of N bits is a valid codeword
or a forbidden encoding?

• Last class, we saw how to solve all these problems by representing
the codes mathematically and using the magic of linear algebra.

• The valid codewords formed a subspace in the vector space of the
finite field ZN

2 .

Generator and Parity Check Matrices 3

• Using aritmetic mod 2, we could represent a code using either a set
of basis functions or a set of constraint (check) equations,
represented a generator matrix G or a parity check matrix H .

• Every linear combination basis vectors is a valid codeword & all
valid codewords are spanned by the basis; similarly all valid
codewords satisfy every check equation & any bitstring which
satisfies all equations is a valid codeword.

• The rows of the generator matrix form a basis for the subspace of
valid codes; we could encode a source message s into its
transmission t by simple matrix multiplication: t = sG.

• The rows of the parity check matrix H form a basis for the
complement of the code subspace and represent check equations
that must be satisfied by every valid codeword. That is, all
codewords v are orthogonal to all rows of H (lie in the null space
of H), meaning that vHT = ~0.

Repetition Codes and Single Parity-Check Codes 4

• An [N, 1] repetition code has the following generator matrix:
[

1 1 1 1
]

for N=4

Here is a parity-check matrix for this code:





1 0 0 1
0 1 0 1
0 0 1 1





•One generator matrix for the [N,N − 1] single parity-check code is
the following:





1 0 0 1
0 1 0 1
0 0 1 1





Here is the parity-check matrix for this code:
[

1 1 1 1
]

Manipulating the Parity-Check Matrix 5

• There are usually many parity-check matrices for a given code.
We can get one such matrix from another using the following “el-
ementary row operations”, which don’t alter the solutions to the
equations the parity-check matrix represents.

– Swapping two rows.

– Adding a row to a different row.

Ex: This parity-check matrix for the [5, 2] code:




1 1 0 0 0
0 0 1 1 0
1 0 1 0 1





can be transformed into this alternative:




1 1 0 0 0
0 0 1 1 0
0 1 0 1 1





Manipulating the Generator Matrix 6

•We can apply the same elementary row operations to a generator
matrix for a code, in order to produce another generator matrix, since
these operations just convert one set of basis vectors to another.

Example: Here is a generator matrix for the [5, 2] code we have
been looking at:

[

0 0 1 1 1
1 1 0 0 1

]

Here is another generator matrix, found by adding the first row to
the second:

[

0 0 1 1 1
1 1 1 1 0

]

Note: These manipulations leave the set of codewords unchanged,
but they don’t leave the way we encode messages by computing
t = sG unchanged!

Equivalent Codes 7

• Two codes are said to be equivalent if the codewords of one are just
the codewords of the other with the order of symbols permuted.

• Permuting the order of the columns of a generator matrix will produce
a generator matrix for an equivalent code, and similarly for a parity-
check matrix.

• Example: Here is a generator matrix for the [5, 2] code we have
been looking at:

[

0 0 1 1 1
1 1 0 0 1

]

•We can get an equivalent code using the following generator matrix
obtained by moving the last column to the middle:

[

0 0 1 1 1
1 1 1 0 0

]

Generator & Parity Matrices In Systematic Form 8

• Using elementary row operations and column permutations, we can
convert any generator matrix to a generator matrix for an equivalent
code that is is systematic form, in which the left end of the matrix
is the identity matrix.

• Similarly, we can convert to the systematic form for a parity-check
matrix, which has an identity matrix in the right end.

• For the [5, 2] code, only permutations are needed. The generator
matrix can be permuted by swapping columns 1 and 3:

[

0 0 1 1 1
1 1 0 0 1

]

⇒

[

1 0 0 1 1
0 1 1 0 1

]

•When we use a systematic generator matrix to encode a block s

as t = sG, the first K bits will be the same as those in s. The
remaining N − K bits can be seen as “check bits”.

Relationship b/w Generator & Parity Matrices 9

• If G and H are generator and parity-check matrices for C, then for
every s, we must have (sG)HT = ~0 — since we should only generate
valid codewords. It follows that

GHT = ~0

• Furthermore, any H with N−K independent rows that satisfies this
is a valid parity-check matrix for C.

• Suppose G is in systematic form, so for some P ,

G = [IK | P]

• Then we can find a parity-check matrix for C in systematic form as
follows:

H = [−PT | IN−K]

since GHT = −IKP + PIN−K = ~0.

(Note that in Z2, −PT = PT .)

More on Hamming Distance 10

• Recall that the Hamming distance, d(u,v), of two codewords u and
v is the number of positions where u and v have different symbols.

• This is a proper distance, which satisfies the triangle inequality :

d(u,w) ≤ d(u,v) + d(v,w)

• Here’s a picture showing why:

u : 0 1 1 0 0 1 1 0 1 1 1 0

- - - - - -

v : 0 1 1 0 0 1 0 1 0 0 0 1

- - - - -

w : 0 1 1 1 1 0 0 1 0 0 1 0

Here, d(u,v) = 6, d(u,v = 5), and d(u,w) = 7.

Minimum Distance and Decoding 11

• A code’s minimum distance is the minimum of d(u,v) over all dis-
tinct codewords u and v.

• If the minimum distance is at least 2t+1, a nearest neighbor decoder
will always decode correctly when there are t or fewer errors.

• Here’s why: Suppose the code has distance d ≥ 2t + 1.
If u is sent and v is received, having no more than t errors, then

– d(u,v) ≤ t.

– d(u,u′) ≥ d for any codeword u
′ 6= u.

From the triangle inequality:

d(u,u′) ≤ d(u,v) + d(v,u′)

• It follows that

d(v,u′) ≥ d(u,u′) − d(u,v) ≥ d − t ≥ (2t + 1) − t ≥ t + 1

The decoder will therefore decode correctly to u, at distance t, rather
than to some other u

′.

A Picture of Distance and Decoding 12

• Here’s a picture of codewords (black dots) for a code with minimum
distance 2t + 1, showing how some transmissions are decoded:

less than t errors
Correct decoding with

Correct decoding with
more than t errors

Incorrect decodings with
more than t errors

t

Minimum Distance for Linear Codes 13

• To find the minimum distance for a code with 2K codewords, we will
in general have to look at all 2K(2K−1)/2 pairs of codewords.

• But there’s a short-cut for linear codes...

• Suppose two distinct codewords u and v are a distance d apart. Then
the codeword u − v will have d non-zero elements. The number of
non-zero elements in a codeword is called its weight.

• Conversely, if a non-zero codeword u has weight d, then the minimum
distance for the code is at least d, since ~0 is a codeword, and d(u,~0)
is equal to the weight of u.

• So the minimum distance of a linear code is equal to the minimum
weight of the 2K−1 non-zero codewords. (This is useful for small
codes, but when K is large, finding the minimum distance is difficult
in general.)

Examples of Minimum Distance and Error
Correction for Linear Codes 14

• Recall the [5, 2] code with the following codewords:

00000 00111 11001 11110

• The three non-zero codewords have weights of 3, 3, and 4.
This code therefore has minimum distance 3, and thus can correct
any single error since (2t + 1 = 3 for t = 1).

• The single-parity-check code with N = 4 has these codewords:

0000 0011 0101 01101001 1010 1100 1111

• The smallest weight of a non-zero codeword above is 2, so this is
the minimum distance of this code. This is too small to guarantee
correction of even one error. (Though the presence of a single error
can be detected.)

Finding Minimum Distance From a Check Matrix 15

•We can find the minimum distance of a linear code from a parity-
check matrix for it, H .

• The minimum distance is equal to the smallest number of linearly-
dependent columns of H .

•Why? A vector u is a codeword iff uHT = ~0. If d columns of H are
linearly dependent, let u have 1s in those positions, and 0s elsewhere.
This u is a codeword of weight d. And if there were any codeword
of weight less than d, the 1s in that codeword would identify a set
of less than d linearly-dependent columns of H .

• Special cases:

– If H has a column of all zeros, then d = 1.

– If H has two identical columns, then d ≤ 2.

– For binary codes, if all columns are distinct and non-zero, then
d ≥ 3.

