CSC310 - Information Theory Sam Roweis

LECTURE 15:

LINEAR CODES

November 7, 2005

POTENTIAL PROBLEMS WITH LARGE BLOCKS 2

e Using very large blocks could potentially cause some serious
practical problems with storage/retrieval of codewords.

e In particular, if we are encoding blocks of K bits, our code will
have 25 codewords. For K ~ 1000 this is a huge number!

e How could we even store all the codewords?

e How could we retrieve (look up) the N bit codeword corresponding
to a given K bit message?

e How could we check if a given block of IV bits is a valid codeword
or a forbidden encoding?

e Today, we'll see how to solve all these problems by representing the
codes mathematically and using the magic of linear algebra.

LoONG BLOCKS 1

o Recall that Shannon's second theorem tells us that for any noisy
channel, there is some code which allows us to achieve error free
transmission at a rate up to the capacity.

e However, this might require us to encode our message in very long
blocks. Why?

e Intuitively it is because we need to add just the right fraction of
redundancy; too little and we won't be able to correct the erorrs,
too much and we won't achieve the full channel capacity.

e For many real world situations, the block sizes used are thousands
of bits, e.g. K = 1024 or K = 4096.

THE FINITE FIELD Z9 3

e From now on, we will consider only at binary channels, whose input
and output alphabets are both {0, 1}.

o We will look at the symbols 0 and 1 as elements of 75,
the integers considered modulo 2.

e 7 (also called I or GF'(2)) is the smallest example of a “field” — a
collection of “numbers” that behave like real and complex numbers.
Specifically, in a field:

— Addition and multiplication are defined. They are commutative
and associative. Multiplication is distributive over addition.

— There are numbers called 0 and 1, such that
z+0==zand z-1 =z for all z.

— Subtraction and division (except by 0) can be done, and these
operations are the inverses of addition and multiplication.




ARITHMETIC IN Zy 4

o Addition and multiplication in Z5 are defined as follows:
0+40=0 0-0=0
0+1=1 0-1=0
140=1 1-0=0
1+1=0 1-1=1
e This can also be seen as arithmetic modulo 2, in which we always
take the remainder of the result after dividing by 2.

e Viewed as logical operations, addition is the same as ‘exclusive-or’,
and multiplication is the same as ‘and’.

Note: In Zy, —a = a, and hence a — b =a + b.

LINEAR CODES 6

e We can view Zév as the input and output alphabet of the Nth
extension of a binary channel.

e A code, C, for this extension of the channel is a subset of Zév.

o C is a linear code if the following condition holds:
**¥*f u and v are codewords of C, then u+ v is also a codeword.***
In other words, C must be a subspace of Zév.

o Notice that since u+u = 6 the all-zero codeword must be in C.

Note: For non-binary codes, we need a second condition, namely that
if uis a codeword of C and z is in the field, then zu is also a codeword.

VECTOR SPACES OVER 2y 5

e Just as we can define vectors over the reals, we can define vectors
over any other field, including over Z5. We get to add such vectors,
and multiply them by a scalar from the field.

e We can think of these vectors as IN-tuples of field elements.
For instance, with vectors of length five over Zs:

(1,0,0,1,1) + (0,1,0,0,1) = (1,1,0,1,0)
1-(1,0,0,1,1) = (1,0,0,1,1)
0-(1,0,0,1,1) = (0,0,0,0,0)

o Most properties of real vector spaces hold for vectors over Z9 — eg,
the existence of basis vectors.

e We refer to the vector space of all N-tuples from Z5 as ZN: these
are all bitstrings of length V. We will use boldface letters such as u
and v to refer to such vectors.

LINEAR CODES FrROM BASIS VECTORS 7

e We can construct a linear code by choosing K linearly-independent
basis vectors from Zév :

o We'll call the basis vectors uy,...,ug. We define the set of code-
words to be all those vectors that can be written in the form

aju] +agu + -+ +agug

where a1, ...,ap are elements of Z5.
e The codewords obtained with different aq,...,ay are all different.
(Otherwise uy, ..., ug wouldn't be linearly-independent.)

e There are therefore 2 codewords. We can encode a block consisting
of K symbols, ay,...,a, from Zy as a codeword of length N using
the formula above.

e This is called an [V, K] code. (MacKay's book uses (N, K), but
that has another meaning in other books.)




LINEAR CODES FROM LINEAR EQUATIONS 8

e Another way to define a linear code for Zév is to provide a set of
simultaneous equations that must be satisfied for v to be a codeword.

e These equations have the form c-v =0, ie
clup + v+ +ceyoy = 0
e The set of solutions is a linear code because
c-u=0andc-v=0impliesc-(u+v)=0.

o If we have N — K such equations, and they are independent, the

THE SINGLE PARITY-CHECK CODES 10

e An [N, N — 1] code over Z5 can be defined by the following single
equation satisfied by a codeword v:

vi+vg+---+ouy = 0
In other words, the parity of all the bits in a codeword must be even.

e This code can also be defined using N — 1 basis vectors.
One choice of basis vectors when N =5 is as follows:

, 1,0,0,0,1

code will have 2 codewords. EO 10.0 1;
e The basis representation and the constraint equation representations (07 07 17 07 1)

are equivalent: we can always convert from one to the other. (In (O’O’O’ 1’ 0

linear algebra terms, we can either specify a basis for the codeword T

subspace or a basis for its complement null space.)
olf K is close to IV, it is more compact to specify the constraint

equations; if K is close to 0, it is more compact to specify the basis.

THE REPETITION CODES OVER Z» 9 A [5,2] BINARY CODE 11

o A repetition code for Zév has only two codewords — one has all Os,
the other all 1s.

e This is a linear [N, 1] code, with (1,...,1) as the basis vector.

e The code is also defined by the following N — 1 equations satisfied
by a codeword v:

v1+1v0=0, vu+v3=0, -, vy_1+oy=0

e Each of these equations has two solutions, {0,0} and {1, 1}.
But the only solutions which satisfy them all are all Os or all 1s.

e Recall the following code from lecture 13 (page 12):
{00000, 00111, 11001, 11110}

e |s this a linear code?
We need to check that all sums of codewords are also codewords:
00111 + 11001 = 11110

00111 + 11110 = 11001
11001 + 11110 = 00111

o We can generate this code using 00111 and 11001 as basis vectors.
We then get the four codewords as follows:
0-00111+0 - 11001 = 00000

0-00111 +1-11001 = 11001
1-00111+40-11001 = 00111
1-00111+1-11001 = 11110




GENERATOR MATRICES 12

e We can arrange a set of basis vectors for a linear code in a generator
matrix, each row of which is a basis vector.

e A generator matrix for an [N, K| code will have K rows and N
columns.

e Here's a generator matrix for the [5, 2] code looked at earlier:
00111
11001

e Note: Almost all codes have more than one generator matrix.

PARITY-CHECK MATRICES 14

e Suppose we have specified an [N, K| code by
a set of M = N — K equations satisfied by any codeword, v:

C1,1 V1 + C12V2 + -+ CINUN = 0
Co1 U1+ CoVy+ -+ nvy =0

CvaAULF CyraVa+ - ey nuy =0

e We can arrange the coefficients in these equations in a parity-check
matrix, as follows:

Ci1 C2 " CN
Co1 G2 " CON
Cm1 Cm2 *° CMN

e If C has parity-check matrix H, we can check whether v is in C by
seeing whether v = (.

Note: Almost all codes have more than one parity-check matrix.

ENcODING BLOCKS USING A GENERATOR MATRIX 13

e We can use a generator matrix for an [V, K] code to encode a block
of K message bits as a block of NV bits to send through the channel.

e We regard the K message bits as a row vector, s, and multiply by
the generator matrix, (&, to produce the channel input, t:

t = sG

o If the rows of GG are linearly independent, each distinct s will produce
a different t, and every t that is a codeword will be produced by some
S.

e Example: Encoding the message block (1, 1) using the generator
matrix for the [5,2] code given earlier:

[11}{??331} = [11110]

ExaMpLE: THE [5,2] CODE 15

e Here is one parity-check matrix for the [5, 2] code used earlier:

=[000]

(e
==
Il

[10011] [110]

S OO =
e




REPETITION CODES AND SINGLE PARITY-CHECK CODES 16

e An [N, 1] repetition code has the following generator matrix:
[1 11 1} for N=4

Here is a parity-check matrix for this code:

1001
0101
0011

e One generator matrix for the [V, N — 1] single parity-check code is
the following:

1001
0101
0011

Here is the parity-check matrix for this code:

[1111]




