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Channel Capacity 1

• The mutual information I(X ; Y ) measures how much information
the channel transmits, which depends on two things:
1) The transition probabilities Q(j|i) for the channel.

2) The input distribution p(i).

• We assume that we can’t change (1), but that we can change (2).

• The capacity of a channel is the maximum value of I(X ; Y ) that
can be obtained with any choice of input distribution.

• We will eventually see that the capacity is the rate at which data
can be sent through the channel with vanishingly small probability
of error.

Example: BSC 2

• Consider a BSC with probability f of incorrect transmission. From
the channel’s symmetry,

H(Y |X) = f log(1/f ) + (1−f ) log(1/(1−f ))

which doesn’t depend on the input distribution.

•H(Y ) does depend on the input distribution.
If p0 is the probability of a “0” input, the output probabilities are
q0 = p0(1−f ) + (1−p0)f and q1 = (1−p0)(1−f ) + p0f , so

H(Y ) = q0 log(1/q0) + q1 log(1/q1)

• This is maximized, at the value 1 bit, when q0 = q1 = 1/2, which
happens when p0 = 1/2; thus the capacity in bits is:

C = max
p0

I(X ; Y ) = max
p0

H(Y ) − H(Y |X)

= 1 − [f log2(1/f ) + (1−f ) log2(1/(1−f ))]

= 1 − H2(f )

Example: The Z Channel 3

• Consider the asymmetric Z channel, which always transmits “0”
correctly, but turns “1” into “0” with probability f . Suppose we
use an input distribution in which “0” occurs with probability p0.

q0 = p0 + (1−p0)f

q1 = (1 − p0)(1−f )

H(Y ) = q0 log(1/q0) + q1 log(1/q1)

= H2((1−p0)(1−f ))

H(Y |X = 0) = 0

H(Y |X = 1) = f log(1/f ) + (1−f ) log(1/(1−f )) = H2(f )

H(Y |X) = (1−p0)H2(f )

I(X ; Y ) = H(Y ) − H(Y |X)

= H2((1−p0)(1−f )) − (1−p0)H2(f )



Z-Channel Example Continued 4

• Here are plots of I(X ; Y ) as a function of p0, when
f = 0, 0.2, 0.4, 0.6, 0.8:
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The maxima give the capacities of the channel for each f :

f p0 at max Capacity
0.0 0.500 1.000
0.2 0.564 0.618
0.4 0.591 0.407
0.6 0.608 0.246
0.8 0.621 0.114

Extensions of Channels 5

• The N th extension of a channel consists of a block of N
independent usages of the channel in a row.

• The input alphabet for this extension, AX , consists of N -tuples
(ai1, . . . , aiN ).

• The output alphabet, AY , consists of N -tuples (bj1
, . . . , bjN )

• Assuming the N usages don’t interact, the transition probabilities
for the extension are

Qj1,...,jN |i1,...,iN
= Qj1|i1

Qj2|i2
· · ·QjN |iN

• If we use input probabilities of

pi1,...,iN = pi1 · · · piN

it is easy to show that the input and output entropies, the
conditional entropies, and the mutual information are all N times
those of the original channel.

Capacity of the Extension 6

• We can maximize mutual information for the extension by using an
input distribution in which

– each symbol is independent

– each symbol has the distribution that maximizes mutual
information for the original channel.

• It follows that the capacity of the extension is N times the capacity
of the original channel.

• But treating the N copies independently is uninteresting — we gain
nothing over the original channel.

•The strategy: We don’t chose the input distribution to maximize
mutual information, but rather use one that is almost as good, and
which lets us correct almost all errors.

Codes for the Extension 7

• A code, C, for the N th extension is a subset of the set of all
possible blocks of N input symbols — ie, C ⊆ AN

X .

• The elements of C are called the codewords.
These are the only blocks that we ever transmit.

• For example, one code for the third extension of a BSC is the
“repetition code”, in which there are two codewords, 000 and 111.

• The N th extension together with the code can be seen as a
channel with |C| input symbols and |AY |

N output symbols.



Decoding to a Codeword 8

• When the sender transmits a codeword in C, the receiver might (in
general) see any output block, bj1

· · · bjN ∈ AN
Y .

The receiver can try to decode this output in order to recover the
codeword that was sent.

The optimal method of decoding is to choose a codeword, w ∈ C,
which maximizes

P (w | bj1
· · · bjN ) =

P (w) P (bj1
· · · bjN |w)

P (bj1
· · · bjN )

In case of a tie, we pick one of the best w arbitrarily.

If P (w) is the same for all w ∈ C, this scheme is equivalent to
choosing w to maximize the “likelihood”, P (bj1

· · · bjN |w).

Example: A Repetition Code 9

• Suppose we use the three-symbol repetition code for a BSC with
f = 0.1. Assume that the probability of 000 being sent is 0.7 and
the probability of 111 being sent is 0.3. What codeword should the
decoder guess if the received symbols are 101?

P (w = 000 | b1 = 1, b2 = 0, b3 = 1)

=
P (w = 000) P (b1 = 1, b2 = 0, b3 = 1 |w = 000)

P (b1 = 1, b2 = 0, b3 = 1)

=
0.7 × 0.1 × 0.9 × 0.1

0.7 × 0.1 × 0.9 × 0.1 + 0.3 × 0.9 × 0.1 × 0.9
= 0.206

P (w = 111 | b1 = 1, b2 = 0, b3 = 1)

=
P (w = 111) P (b1 = 1, b2 = 0, b3 = 1 |w = 111)

P (b1 = 1, b2 = 0, b3 = 1)

=
0.3 × 0.9 × 0.1 × 0.9

0.7 × 0.1 × 0.9 × 0.1 + 0.3 × 0.9 × 0.1 × 0.9
= 0.794

• The decoder should guess that 111 was sent.

Associating Codewords with Messages 10

• Suppose our original message is a sequence of K bits.
(Otherwise, we might break our message up into K-bit blocks.)

• If we use a code with 2K codewords, we can send this message (or
block) as follows:

– The encoder maps the block of K message symbols to a
codeword.

– The encoder transmits this codeword.
– The decoder guesses at the codeword sent.
– The decoder maps the guessed codeword back to a block of K

message symbols.

We hope the block of decoded message symbols is the same as the
original block!

Example: To send binary messages through a BSC with the
repetition code, we use blocks of size one, and the map
0 ↔ 000, 1 ↔ 111.

Decoding for a BSC By Maximum Likelihood 11

• For a BSC, if all codewords are equally likely, the optimal decoding
is the codeword differing in the fewest bits from what was received.

• The number of bits where two bit sequences, u and v, differ is
called the Hamming distance, written d(u, v).
Example: d(00110, 01101) = 3

• The probability that a codeword w of length N will be received as
a block b through a BSC with error probability f is

(1−f )N−d(w,b) f d(w,b) = (1−f )N
(

f

1−f

)d(w,b)

• If f < 1/2, and hence f/(1−f ) < 1, choosing w to maximize this
likelihood is the same as choosing w to minimize the Hamming
distance between w and b.



An Example Code for the BSC 12

• Here’s a code with four 5-bit codewords:

00000, 00111, 11001, 11110

• We can map between 2-bit blocks of message bits and these
codewords as follows:

00 ↔ 00000 01 ↔ 00111

10 ↔ 11001 11 ↔ 11110

• Suppose the sender encodes the message block 01 as 00111 and
transmits it, and the receiver then sees the output 00101.

• How should this be decoded? We look at the Hamming distances
to each codeword:

d(00000, 00101) = 2 d(00111, 00101) = 1

d(11001, 00101) = 3 d(11110, 00101) = 4

• The decoder therefore picks the codeword 00111, corresponding to
the message block 01.

The Rate of a Code 13

• A code C with |C| binary codewords of length N , is said to have
rate

R =
log2 |C|

N
• Suppose we are sending binary messages through a binary channel,

using a code with 2K codewords of length N . Then the rate will be

R = K/N

• For example, if we encode message blocks of 100 bits into
codewords consisting of 300 bits, the rate will be 1/3.

A Preview of the Noisy Coding Theorem 14

• Shannon’s noisy coding theorem states that:

For any channel with capacity C, any desired error probability,
ε > 0, and any transmission rate, R < C, there exists a code
with some length N having rate at least R such that the
probability of error when decoding this code by maximum
likelihood is less than ε.

• In other words: We can transmit at a rate arbitrarily close to the
channel capacity with arbitrarily small probability of error.

• The converse is also true: We cannot transmit with arbitrarily
small error probability at a rate greater than the channel capacity.

• We could always chose to transmit beyond the capacity, but not
with vanishly small error – our best possible error rate would still be
finite.

Why We Can’t Use a BSC Beyond Capacity 15

• If we could transmit through a BSC beyond the capacity
C = 1 − H2(f ), with vanishingly small error probability, we could
compress data to less than its entropy.

• Here’s how we would do it:

– Divide the data into two blocks: x is of length K and has bit
probabilities of 1/2, y is of length N and has bit probabilities of
f and 1−f . The total information in x and y is K + NH2(f ).

– Encode x in a codeword w of length N , and compute z = w + y,
with addition modulo 2. This z is the compressed form of the
data.

– Apply the decoding algorithm to recover w from z, treating y as
noise. We can then recover x from w and also y = z − w.



Continuing.. 16

• We can handle a small number of errors by checking where they
would occur and transmitting extra bits needed to identify
corrections. This adds only a few more bits to the compressed form
of the data.

The result: We compressed a source with entropy K + NH2(f ))
into only slightly more than N bits.

This is possible only if N ≥ K + NH2(f ), which implies that
R = K/N ≤ 1 − H2(f ) = C.


