CSC310 - Information Theory Sam Roweis

ADAPTING PROBABILITIES DURING ENCODING 2

LECTURE 10:

ADAPTIVE ENCODING MODELS, PPM

October 17, 2005

e Example:
We might encode the 107th pixel in a black-and-white image using
the count of how many of the previous 106 pixels are black.

o If 13 of these 106 pixels were black, we encode the 107th pixel using
P(Black) = (13 +1)/(106 + 2) = 0.1308

e Changing probabilities like this is easy with arithmetic coding,
during encoding we simply subdivide the intervals according to the
current probabilities. During decoding we can recover these
probabilities as we reconstruct the symbols and so we can do the
same thing.

e This adaptive scheme is much harder to do with Huffman codes,
especially if we encode blocks of symbols.

IDEA: ADAPTIVE MODELS BASED ON HISTORY SO FaArR 1

e We can do better using an adaptive model,
which continually re-estimates probabilities using counts of symbols
in the earlier part of the message.

e We need to avoid giving any symbol zero probability, since its
“optimal” codeword length would then be log(1/0) = occ.
One “kludge”: Just add one to all the counts.

e This is actually one of the methods that can be justified by the
statistical theory of Bayesian inference.

e Bayesian inference uses probability to represent uncertainty about
anything — not just which symbol will be sent next, but also what
the probabilities of the various symbols are.

ANY ADAPTIVE MODEL ASSIGNS PROBABILITIES
TO SEQUENCES OF SYMBOLS 3

e Any way of producing predictive probabilities for each symbol in
turn will also assign a probability to every sequence of symbols.

e We just multiply together the predictive probabilities as we go.
o For example, the string " CAT."” has probability

P(X;="C)
X P(Xy = ‘N | X =C)
x P(X3 =T | X, =‘C, Xo="A)

X P(X4=‘.'|X1:‘C', XQI‘A', X3:‘T’)
where the probabilities above are the ones used to code each

individual symbol.

e With an optimal coding method, the number of bits used to encode
the entire sequence will be close to the log of one over its
probability.

PROBABILITIES OF SEQUENCES W/ LAPLACE MODEL 4

MARKOV SOURCES 6

e The general form of the “add one to all the counts” method uses
the following predictive distributions:
P(Xp = a;) = 1 + Number of[earlier occurrences of a;
+n—1
where [is the size of the source alphabet.
This is called “Laplace’s Rule of Succession”.

e So the probability of a sequence of n symbols is

(I —1) ! |

—_ n;!

— 1) t
(I+n-1) Pl

where n; is the number of times a; occurs in the sequence.

e It's much easier to code one symbol at a time (using arithmetic
coding) than to encode a whole sequence at once, but we can see
from this what the model is really saying about which sequences are
more likely.

e An K -th order Markov source is one in which the probability of a
symbol depends on the preceding K symbols.

e We can write the probability of a sequence of symbols,
X1, Xo,..., X, from such a source with K = 2 as follows
(assuming we know all the probabilities):
P(Xl = a,,;l,XQ = a,,;Q, e ,Xn = ain)
= P(Xy =a;) X P(Xo = a;, | X1 =a;)
X P(X3=a; | X1 =a;,X>=aq;)
x P(Xy=aj | Xo=a;,X3=a;)
- X P(Xp=aj, | Xn2=a;, ,, Xp_1=a;,)
= P(X1 = a;) x P(X2=a;, | X1 =a;)
X M(iy, ig,i3) M (ig,i3,44) - - - M (ip,—2, 71, in)
e Here, M (i, j, k) is the probability of symbol aj, when the preceding
two symbols were a; and a;.

MoDELS WITH MULTIPLE CONTEXTS 5

e So far, we've looked at models in which the symbols would be
independent, if we knew what their probabilities were.

e If we don't know the probabilities, our predictions do depend on
previous symbols, but the symbols are still “exchangeable”
— their order doesn’t matter.

e Very often, this isn't right: The probability of a symbol may depend
on the context in which it occurs — eg, what symbol precedes it.

e Example: “U" is much more likely after “Q" (in English), than
after another “U". Probabilities may also depend on position in the
file, though modeling this is less common.

e Example: Executable program files may have machine instructions
at the beginning, and symbols to help with debugging at the end.

ADAPTIVE MARKOV MODELS 7

e Some sources may really be Markov of some order K, but usually
not. We can nevertheless use a Markov model for a source as the
basis for data compression.

e Usually, we don't know the “transition probabilities”, so we
estimate them adaptively, using past frequencies, as before.

e Eg, for K = 2, we accumulate frequencies in each context,
F(i,7,k), and then use probabilities

M(i,j, k) = F(i,j,k)/ > F(i,j,K)
k./

e After encoding symbol ay, in context a;, a;, we increment F'(i, j, k).

e A K-th order Markov model has to handle the first K'—1 symbols
differently. One approach: Imagine that there are K symbols
before the beginning with some special value (eg, space).

ADAPTIVE MARKOV MODELS APPLIED TO ENGLISH TEXT 8

e Adaptive Markov models of order 0, 1, and 2, using arithmetic
coding, applied to three English text files (Latex), of varying sizes.

Markov Model of Order 0

Uncompressed
file size

Compressed
file size

Compression
factor

Bits per
character

2344
20192
235215

Markov Model

Uncompressed
file size

1431
12055
137284

Compressed
file size

1.64
1.67
171

of Order 1
Compression
factor

4.88
4.78
4.67

Bits per
character

2344
20192
235215

Markov Model

Uncompressed
file size

1750
11490
114494

Compressed
file size

1.34
1.76
2.05

of Order 2
Compression
factor

5.97
4.55
3.89

Bits per
character

2344
20192
235215

2061
13379
111408

1.14
1.51
2.11

7.03
5.30
3.79

CoNTEXTS USED BY PPM 10

e PPM maintains frequencies for characters that have been seen
before in all contexts that have occurred before, up to some
maximum order.

e Suppose we have so far encoded the string
this_is_th

o If we are using contexts up to order two, then we will record
frequencies for the following contexts:

Order 0: ()

Order 1: (t) (R) (1) (s) (L)
Order 2: (th) (hi) (is) (s_) (1) (_t)

How LARGE AN ORDER SHOULD BE USED?

e We can see a problem with these results. A Markov model of high
order works well with long files, in which most of the characters are
encoded after good statistics have been gathered.

e But for small files, high-order models don't work well — most
characters occur in contexts that have occurred only a few times
before, or never before. For the smallest file, the zero-order model
with only one context was best, even though we know that English

has strong dependencies between characters!

o We would like to get both the advantages of:

—fast learning of a low-order model

— ultimately better prediction of a high-order model

e We can do this by varying the order we use.

e One scheme for this is the “prediction by partial match” (PPM)

model.

“FEscAPING” FrROM A CONTEXT 11

e The frequency tables maintained by PPM contain only the
characters that have been seen before in that context.

Examples: if “x" has never occurred, none of the frequency tables
will have an entry for “x".
If “X" has occurred before, but not after a “t”, the frequency table

for order 1 context (t) will not contain "x".

e The main idea: If we need to encode a character that doesn't
appear in the context we're using, we transmit an “escape” flag,
and switch to a lower-order context.

e What if we escape from every context? We end up in a special
“order -1" context, in which every character has a frequency of 1.

FREQUENCIES IN CONTEXTS 12

o Two details about frequencies need to be resolved.
e First, what characters do we count in a context?

—We might count every character that appears following the
characters making up the context.

—We might count a character in a context only when it does not
appear in a higher-order context.

e One could argue for either way, but we'll go for the second option.

FREQUENCIES AFTER ENCODING this_is_th 14

Order-1: _:lalbl--- zl
Order 0: () Escape:l t:2h:1i:2s:1_:1
Order 1:
(t) Escape:l h:2
(h) Escape:l i:l
Escape:l s:2
Escape:1 _:1
Escape:1 i:1 t:1

| n -
~— — —

(.
(
(
Order 2
e Second, what do we use as the frequency of the “escape” symbol? r(irh) Escape:l i1
There are many possibilities. We'll just always give it a frequency of (ni) Escape:l s:l
one, no matter how many times we escape a given context. (is) EscaEe:l :2
(s_) Escape:li:l1t:1
(_i) Escape:ls:1
(_t) Escape:1 h:l
Basic PPM ENCODING METHOD 13 LEARNING A VOCABULARY 15

Loop until end of file:

Read the next character, c.

Let dg, dg_1, ..., di be the preceding K characters.

Set the context size, k, to the maximum, K.

While (di, ..., dy) hasn’t been seen previously:
Set k to k — 1.

While & > 0 and ¢ hasn't been seen in context (dj, ..., di):
Transmit an escape flag using context (dg, ..., d1).
Set k to k — 1.

If k = —1: {Transmit c using the special “order -1" context. Set k to 0. }

Else {Transmit ¢ using context (dj, ..., d1).}

While k& < K:
Create context (dy, ..., dy) if it doesn't exist.
Increment the count for ¢ in context (d, ..., dy).

Set k to k + 1.

e One reason PPM works well for files like English text is that it can
implicitly learn the vocabulary — the dictionary of words in the
language. This is because early letters of a word like “Ontario”
almost completely determine the remaining letters.

e A more direct approach is to store a dictionary explicitly.
When a word is encountered, a short code for it is sent, rather than
the letters.

e The "LZ" (for Lempel-Ziv) family of data compression algorithms
build a dictionary adaptively, based on the text seen previously.
The “gzip" program is an example.

How WELL Do THESE METHODS WORK?

16

e A version of PPM (written by Bill Teahan) and gzip applied to the
three English text files from before:

PPM
Uncompressed | Compressed | Compression | Bits per
file size file size factor character
2344 1042 2.25 3.56
20192 5903 3.42 2.34
235215 51323 4.58 1.75
GZIP
Uncompressed | Compressed | Compression | Bits per
file size file size factor character
2344 1160 2.02 3.96
20192 7019 2.88 2.78
235215 70030 3.36 2.38

e Speed: On the long file, PPM took 2.2 to encode, 2.3s to decode;
gzip needed only 60ms to encode, <1ms to decode.

