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tions for the maximum likelihood estimate of the random 
function, W(t), which was previously obtained by Youla 
follows.” There also results another system of equations 
determining that estimate of the random function W(t) 
which is equivalent to Youla’s system of equations. 

The general method discussed in the preceding section 
also yields the solution of many other problems of optimum 
system theory and similar problems of many other 
branches of science. 

IV. CONCLUDING REMARKS 

We see that the general method presented above yields 
the effective solution of various problems of applied sta- 
tistical decision theory, particularly, of the statistical 
theory of signal detection and reproduction. 

The algorithm given by the method for obtaining a 

signal estimate may be used as a base for real system 
design. The main difficulty which arises in the practical 
realization of such systems is generally the absence of 
necessary data characterizing the a priori distribution of 
the signal parameter U [i.e., the probability density f(u)]. 
To avoid this difficulty, the same algorithm may be 
applied to obtain the signal parameter U estimate in 
each cycle of the system acting, and to construct for 
each cycle an estimate for f(u) using estimates of U 
obtained in all previous cycles. Using such estimates of 
f(u) for each cycle of the system acting, we obtain a 
“self-learning” system which will be nearer and nearer 
with each new cycle to the true optimum system cor- 
responding to the true probability distribution of the 
vector U.12 
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Quantizing for Minimum Distortion* 
JOEL MAXI- 

Summary-This paper discusses the problem of the minimization 
of the distortion of a signal by a quantizer when the number of 
output levels of the quantizer is fixed. The distortion is delined as 
the expected value of some function of the error between the input 
and the output of the quantizer. Equations are derived for the param- 
eters of a quantizer with minimum distortion. The equations are 
not soluble without recourse to numerical methods, so an algorithm 
is developed to simplify their numerical solution. The case of an 
input signal with normally distributed amplitude and an expected 
squared error distortion measure is explicitly computed and values 
of the optimum quantizer parameters are tabulated. The optimization 
of a quantizer subject to the restriction that both input and output 
levels be equally spaced is also treated, and appropriate parameters 
are tabulated for the same case as above. 
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N MANY data-transmission systems, analog input 
signals are first converted to digital form at the 
transmitter, transmitted in digital form, and finally 

reconstituted at the receiver as analog signals. The result- 
ing output normally resembles the input signal but is 
not precisely the same since the quantizer at the trans- 
mitter produces the same digits for all input amplitudes 
which lie in each of a finite number of amplitude ranges. 
The receiver must assign to each combination of digits 
a single value which will be the amplitude of the reconsti- 
tuted signal for an original input anywhere within the 
quantized range. The difference between input and output 
signals, assuming errorless transmission of the digits, is 
the quantization error. Since the digital transmission rate 
of any system is finite, one has to use a quantizer which 
sorts the input into a finite number of ranges, N. For a 
given N, the system is described by specifying the end 
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points, xk, of the N input ranges, and an output level, yk, 
corresponding to each input range. If the amplitude 
probability density of the signal which is the quantizer 
input is given, then the quantizer output is a quantity 
whose amplitude probability density may easily be deter- 
mined as a function of the zk’s and ylk’s. Often it is appro- 
priate to define a distortion measure for the quantization 
process, which will be some statistic of the quantization 
error. Then one would like to choose the N yk’s and the 
associated xk’s so as to minimize the distortion. If we 
define the distortion, D, as the expected value of f(e), 
where f is some function (differentiable), and E is the 
quantization error, and call the input amplitude prob- 
ability density p(z), then 

= g j=‘+’ fb - Y&(X) dx zi 

The sort of f one would want to use would be a good 
metric function, i.e., f(x) is monotonically nondecreasing 

f(O) = 0 

f(x) = f(-4. 
If we require that f(x) be monotonically increasing (with x) 
then (1) implies 

I xi - Yi-1 I = I xi - Yi I j = 2, ... ,N 

which implies (since yiPI and yi should not coincide) that 

( h lfxi ;b;;w~e;;d/‘/‘d y,‘,= 2, ... , N 

2, is a wa 
We now take a sped& example of f(z) to further 

illuminate the situation. 
Let f(x) = 2’ 

(3) implies 

where xN+, = 00, x, = - ~0, and the convention is that Xj = (yj + yjm1)/2 or ?Ji = 22, - vi-1 

an input bet.ween xi and xi+, has a corresponding output yi. j = 2, . . . ,&- I (5) 
If we wish to minimize D for fixed N, we get necessary 

conditions by differentiating D with respect to the xi’s (4) implies 

and yi’s and setting derivatives equal to zero: 
s 

zi +I 
(x - yJp(x) dx = 0 j = 1, ... , N. (6) =i 

That is, yi is the centroid of the area of p(x) between xi 
j = 2, . . . ,hl (1) and x~+~. 

Because of the complicated functional relationships 
aD 

s 
zi +1 

-=- 
aYi 

f’(x - yj)p(x) dx = 0 which are likely to be induced by p(x) in (B), this is 
zi not a set of simultaneous equations we can hope to solve 

j = 1, .a. ,N (2) with any ease. Note, however, that if we choose y, cor- 
rectly we can generate the succeeding xi’s and yi’s by 

(1) becomes (for p(xj) # 0) (5) and (6), the latter being an implicit equation for xjil 

f(Xi - Yj-1) = f(Xi - YJ j = 2, -es , N (3) 
in terms of xi and yi. 

A method of solving (5) and (6) is to pick yl, calculate 
(2) becomes 

s 

zj +1 
f’(x - y,)p(x) dx = 0 j = 1, s-0 , N. (4) 

zi 

We may ask when these are sufficient conditions. The 
best answer one can manage in a general case is that if 
all the second partial derivatives of D with respect to 
the xi’s and yi’s exist, then the critical point determined 
by conditions (3) and (4) is a minimum if the matrix 
whose ith row and jth column element is 

a2 D 
api apj 

t 
critical point 

where the p’s are the x’s and y’s, is positive definite. 
In a specific case, one may determine whether or not 
the matrix is positive definite or one may simply find 
all the critical points (i.e., those satisfying necessary 
conditions) and evaluate D at each. The absolute minimum 
must be at one of the critical points since “end points” 
can be easily ruled out. 

the succeeding xi’s and yi’s by (5) and (6) and then if 
u,,, is the centroid of the area of p(x) between xN and ~3, 
y1 was chosen correctly. (Of course, a different choice is 
appropriate to each value of N.) If yN is not the appro- 
priate centroid, then of course y1 must be chosen again. 
This search may be systematized so that it can be per- 
formed on a computer in quite a short time.’ 

This procedure has been carried out numerically on the 
IBM 709 for the distribution p(x) = l/ d.% e-ZZ’Z, under 
the restriction that xN/Z+l = 0 for N even, and Y(,~+~)/~ = 0 
for N odd. This procedure gives symmetric results, i.e., 

1 Obtaining ezplicit solutions to the quantizer problem for a 
nontrivial D(Z) is easily the most difficult part of the problem. 
The problem may be so&d analytically where p(z) = l/d% e-z-/z 
onlyforN=l,N=2.ForN=l,zl= --m,y,=0,z2= -j-m. 
ForN =2,x1 = -w,y, = --2/2/?r,z2 = 0, y2=fl,x3 = fm, 
(423 is the centroid of the portion of l/d/27; e-z*/2 between the 
origin and + a.) For N & 3, some sort of numerical estimation is 
required. A somewhat dtierent approach, which yields results 
somewhat short of the ontimum. is to be found in V. A. Gamash. 
“Quantization of signals-with non-uniform steps,” Electrosvyaz, vol: 
10, pp. 11-13; October, 1957. 
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if a signal amplitude x is quantized as yk, then -x is 
quantized as -yJh. The answers appear in Table I on 
page 11. 

An attempt has been made to determine the functional 
dependence of the distortion on the number of output 
levels. A log-log plot of the distortion vs the number of 
output levels is in Fig. 1. The curve is not a straight line. 
The tangent t,o the curve at N = 4 has the equation 
D = 1.32 N-“74 and the tangent at N = 36 has the 
equation D = 2.21 x-‘.‘~. One would expect this sort 
of behavior for large N. When N is large, the amplitude 
probability density does not vary appreciably from one 
end of a single input range to another, except for very 
large amplitudes, which are sufficiently improbable so 
that their influence is slight. Hence, most of the output 
levels are very near to being the means of the end points 
of the corresponding input ranges. Now, the best way 
of quant,izing a uniformly distributed input signal is to 
space the output levels uniformly and to put the end 
points of the input ranges halfway between the output 
levels, as in Fig. 2, shown for N = 1. The best way of 
producing a quantizer with 2N output levels for this 
distribution is to divide each input &nge in half and 
put the new output levels at the midpoints of these 
ranges, as in Fig. 3. It is easy to see that the distortion 
in the second case is $ that’ in the first. Hence, D = kNe2 
where k is some constant. In fact, lc is the variance of 
the distribution. 

If this sort of equal division process is performed on 
each input range of the optimum quantizer for a normally 
distributed signal with N output levels where N is large 
then again a reduction in distortion by a factor of 4 is 
expected. Asymptotically then, the equation for the 
tangent to the curve of distortion vs the number of output 
levels should be D = lcN-’ where k is some constant. 

Commercial high-speed analog-to-digital conversion 
equipment is at present limited to transforming equal 
input ranges to outputs midway between the ends of 
the input ranges. In many applications one would like 
to know the best interval length to use, i.e., the one 
yielding minimum distortion for a given number of output 
levels, N. This is an ‘easier problem than the first, since 
it is only two-dimensional (for N 2 2), i.e., D is a func- 
tion of the common length r of the intervals and of 
any particular output level, yk. If the input has a sym- 
metric distribution and a symmetric answer is desired, 
the problem becomes one dimensional. If p(x) is the input 
amplitude probability density and f(x) is the function 
such that the distortion D is E[f(s,,, - sin)], then, for 
an even number 2N of outputs, 

For a minimum we require 

dD -zz 
dr -x (2i - 1) l’1,,. f’(x - [y]r)p(x) dx 

-(2N - 1) l,l,r f’(x - [E2s]r)p(x) dx = 0. (8) 

A similar expression exists for the case of an odd number 
of output levels. In either case the problem is quite 
susceptible to machine computation when f(x), p(x) and N 
are specified. Results have been obtained for f(x) = x2, 
p(x) = l/-&i e+“, N = 2 to 36. They are indicated 
in Table II on page 12. 

A log-log plot of distortion vs number of output levels 
appears in Fig. 1. This curve is not a straight line. The 
tangent to the curve at N = 36 has the equation D = 
1.47 N-‘.74. A log-log plot of output level spacing vs 
number of outputs for the equal spacing which yields 
lowest distortion is shown in Fig. 4. This curve is also 
not a straight line. Lastly, a plot of the ratio of the distor- 
t,ion for the optimum quantizer to that for the optimum 
equally spaced level quantizer can be seen in Fig. 5. 

KEY TO THE TABLES 

The numbering system for the table of output levels, 
ylj, and input interval end points, xi, for the minimum 
mean-squared error quantization scheme for inputs with 
a normal amplitude probability density with standard 
deviation unity and mean zero is as follows: 

For the number of ,output levels, N, even, x1 is the 
first end point of an input range to the right of the 
origin. An input between xi and xi+1 produces an 
output yj. 
For the number of output levels, N, odd, y1 is the 
smallest non-negative output. An input between x,-~ 
and xi produces an output ylj. 

This description, illustrated in Fig. 6, is sufficient because 
of the symmetry of the quantizer. The expected squared 
error of the quantization process and informational 
entropy of the output of the quantizer are also tabulated 
for the optimal quantizers calculated.’ (If ps is the prob- 
ability of the kth output, then the informational entropy 
is defined as -cF=‘=l p, log, pk.) 

Table II also pertains to a normally distributed input 
with standard deviation equal to unity. The meaning of 
the entries is self-explanatory. 

D = 2 x /l;;,l, f(x - [+-jr)p(x) dx 2 The values of informational entropy given show the minimum 
average number of binary digits required to code the quantize1 
output. It can be seen from the tables that this number is always a 
rather large fraction of log, N, and in most cases quite near 0.9 

+ 2 l6,, f(x - [qA]r)p(x) dx. 
log, N. In the cases where N = 2”, n an integer, a simple n binary 

(7) digit code for the outputs of the quantizer makes near optimum use 
r of the digital transmission capacity of the system. 
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Fig. l-Mean squared error vs number of outputs for optimum 
quantizer and optimum equally spaced level quantizer. (Minimum 
mean squared error for normally distributed input with D = 1.) 
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Fig. 2-Optimum quantization for the uniformly distributed case, 
N = 1. (Short strokes mark output levels and long strokes mark 
end points of corresponding input ranges.) 
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Fig. 3-Optimum quantization for the uniformly distributed case, 
N = 2. (Short strokes mark output levels and long strokes mark 

Fig. 4-Output level sp;cing vs number of output levels for equal 
optimum case. (Minimum mean squared error for normally 
distributed input with Q = 1.) 
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Fig. 5-Ratio of error for optimum quantizer to error for optimum 
equally spaced level quantizer vs number of outputs. (Minimum 
mean squared error for normally distribured input with a = 1). 

L 
Fig. G-Labeling of input range end points and output levels,for 

the optimum quantizer. (Short strokes mark output 1evels;and . ,\ 
end points of corresponding input ranges.) long strokes mark input range end points.) 



TABLE I 
PARAMETERS FORTHE OPTIMUM &U.4NTIZER 

- 
-- 

-- 

_- 

-- 

N = 20 N = 21 N=l N=2 N=3 

--z-I-G-- -g--I--&-- silT- 

N = 19 

Yi 

0.0 
0.1984 
0.3994 
0.6059 
0.8215 
1.051 
1.300 
1.579 
1.908 
2.324 
2.946 
-- 

Xi Yi Xi 

0.0 0.1038 0.09918 
0.2083 0.3128 0.2989 
0.4197 0.5265 0.5027 
0.6375 0.7486 0.7137 
0.8661 0.9837 0.9361 
1.111 1.239 1.175 
1.381 1.524 1.440 
1.690 1.857 1.743 
2.068 2.279 2.116 
2.594 2.908 2.635 

Xi 

0.1092 
0.3294 
0.5551 
0.7908 
1.042 
1.318 
1.634 
2.018 
2.550 

Yi 

0.0 
0.2184 
0.4404 
0.6698 
0.9117 
1.173 
1.464 
1.803 
2.232 
2.869 

j=l - 0.0 0.0 0.7980 0.0 1.224 
2 0.6120 

~~~-____~ 
Error 1.000 0.3634 0.1902 

Entropy 0.0 1.000 1.536 

N=6 I N=5 

------AL xi 

0.3823 0.0 
1.244 

Y: E6 
-~ 

0.07994 

-yi Xi 

0.0 0.3177 
0.6589 1.000 
1.447 1.894 

______ 
0.05798 

2.203 2.443 

N=4 
______ 

-------!!I- xi 

j=l 

I 
::;,1, ::::z” 

-~- 
Error 0.1175 

Entropy 1.911 

Error 0.006844 0.006203 0.005648 

Entropy 4.002 4.074 4.141 

N = 22 N=23 1 IV = 21 

Yi 
0.08708 
0.2621 
0.4399 
0.6224 
0.8122 
1.012 
1.227 
1.462 
1.728 
2.042 
2.444 
3.048 

_. 

_. 

-- 

-- 
I 

-- 

-- 

Yi Xi -~ 
0.0 
0.1817 :?746 
0.3654 0:3510 
0.5534 0.5312 
0.7481 0.7173 
0.9527 0.9122 
1.172 1.119 
1.411 1.344 
1.681 1.595 
2.000 1.885 
2.406 2.243 
3.016 2.746 
___- 

xi Yi 

0.0 0.09469 
0.1900 0.2852 
0.3822 0.4793 
0.5794 0.6795 
0.7844 0.8893 
1.001 1.113 
1.235 1.357 
1.495 1.632 
1.793 1.955 
2.160 2.366 
2.674 2.982 

xi 

0.09085 
0.2736 
0.4594 
0.6507 
0.8504 
1.062 
1.291 
1.546 
1.841 
2.203 
2.711 

I N=7 I N=8 I N=9 

Error 0.005165 0.004741 j 0.004367 

Entropy 4.206 4.268 I 4.327 

Xi Yi xi Yi xi Yi 

j=l ______ 
~___~- 

0.2803 0.0 0.0 0.2451 0.2218 0.0 

F 0.8744 1.611 0.5606 1.188 ;:;J;” 0.7560 1.344 ;.G&” 0.4436 0.9188 
4 2.033 1.748 2.152 1:sss 1.476 

2.255 

Error 0.04400 0.03454 0.02785 

Entropy 2.647 2.825 2.983 

N = 25 N=26 j N = 27 
0.1837 0.0 
0.5599 0.3675 
0.9656 
1.436 

:%;4 

2.059 1:693 
2.426 

0.0 0.1684 
0.3401 0.5119 
0.6943 0.8768 
1.081 1.286 
1.534 1.783 
2.141 2.499 

j=l 

I 
kzo47 EE 
0:8339 1.058 

i 
1.325 1.591 
1.968 2.345 

6 
---- 
Error 0.02293 

__- 
Yi Xi 

3.08060 0.07779 
0.2425 0.2340 
0.4066 0.3921 
0.5743 0.5537 
0.7477 0.7202 
0.9289 .0.8936 
1,121 1.077 
1.328 1.273 
1.556 1.487 
1.814 1.727 
2.121 2.006 
2.514 2.352 
3.109 2.842 

_- 

_- 

-- -----A- 

_- 

.- 
t 

-- 

Yi -___ xi 

I.08381 
0 2522 
0.4231 
0 5982 
0.7797 
0.9702 
1.173 
1.394 
1.641 
1.927 
2.281 
2.779 

Yi Xi 

0.0 0.0 
0.1676 0.1616 
0.3368 0.3245 
0.5093 0.4905 
0.6870 0.6610 
0.8723 0.8383 
1.068 1.025 
1.279 1.224 
1.510 1.442 
1.772 1.685 
2.083 1.968 
2.480 2.318 
3.079 2.811 

0.0 
0.1556 
0.3124 
0.4719 
0.6354 0.01922 0.01634 

Entropy 1 3.125 3.253 3.372 0.8049 
0.9824 , 
1.171 
1.374 
1.599 
1.854 
2.158 
2.547 
3.137 

N = 13 
______ 

-...-.-yi xi 

0.1569 0.0 
0.4760 0.3138 
0.8126 0.6383 
1.184 0.9870 
1.623 1.381 
2.215 1.865 

2.565 

-- 

_- 

_- 

-- 

-I- 

0.01406 

N = 14 N = 15 

Yi 

0.0 
0.2739 
0.5548 
0.8512 
1.175 
1.546 
2.007 
2.681 

xi Yi Xi 

0.0 0.1457 0.1369 
0.2935 0.4413 0.4143 
0.5959 0.7505 0.7030 
0.9181 1.086 1.013 
1.277 1.468 1.361 
1.703 1.939 1.776 
2.282 2.625 2.344 

j=l 

5 

t 

F 
8 

Error 0.01223 0.01073 

Entropy 3.481 3.582 

0.003741 0.003477 

4.439 4.491 

Error 0.004036 

Entropy 4.384 

N = 28 N = 29 N = 30 
_- 

_- 

_- 

_- 

Yi 

0.07016 
0.2110 

iELE 
0.6460 
0.7990 
0.9586 
1.127 
1.306 
1.501 
1.717 
1.964 
2.258 
2.638 
3.215 

Xi 

0.0 
0.1406 
0.2821 
0.4255 
0.5719 
0.7225 
0.8788 
1.043 
1.217 
1.404 
1.609 
1.840 
2.111 
2.448 
2.926 

xj 

0.07257 
0.2182 
0.3655 
0.5154 
0.6693 
0.8287 
0.9956 
1.172 
1.362 
1.570 
1.804 
2.077 
2.417 
2.899 

Yi 

kz451 
0: 2913 
0.4396 
0.5912 
0.7475 
0.9100 
1.081 
1.263 
1.461 
1.680 
1.929 
2.226 
2.609 
3.190 

Yi 

0.0 0.07502 
0.1503 0 2256 
0.3018 0 3780 
0.4556 0.5333 
0.6132 0.6930 
0.7760 0.8589 
0.9460 1.033 
1.126 1.218 
1.319 1.419 
1.529 1.640 
1.766 1.892 
2.042 2.193 
2.385 2.578 
2.871 3.164 

3.677 

N = 16 N=17 1 N = 18 

Xi Yi Xi 

j=l 

z 
4 

5 

i 

fi.582 
0: 5224 
0.7996 
1.099 
1.437 
1.844 
2.401 

0.1284 
0.3881 
0.6568 
0.9424 
1.256 
1.618 
2.069 
2.733 

_- 

_- 

_- 

_- 

0.1215 
0.3670 
0.6201 
0.8875 
1.178 
1.508 
1.906 
2.454 

0.0 0.0 0.1148 
0.2430 0.2306 0.3464 
0.4909 0.4653 0.5843 
0.7493 0.7091 0.8339 
1.026 0.9680 1.102 
1.331 1.251 1.400 
1.685 1.573 1.746 
2.127 1.964 2.181 
2.781 2.504 2.826 

Error 0.009497 0.008463 1 0.007589 Error 
_- 

_- 
0.003240 0.003027 

Entropy 3.765 3.849 I 3.928 Entropy 4.542 4.591 

0.002834 

4.639 
Cont’d next pug2 
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TABLE II 

N = 33 PARAMETERSFORTHEOPTI~\IUMEQUALLYS~ACEDLEVELQUANTIZER - 
-- 

-- 

-- 

N = 31 N = 32 

-- 

-- 

-- 
I 

Yi Output Level 
Spacing 

Mean Squared Informational 
Error Entropy Yi Xj 

I.06802 
0.2045 
0.3422 
0.4822 
0.6254 
0.7730 
0.9265 
1.088 
1.259 
1.444 
1.646 
1.875 
2.143 
2.477 
2.952 

Yj 

0.0 
0.1360 
0.2729 
0.4115 
0.5528 
0.6979 
0.8481 
1.005 
1.170 
1.347 
1.540 
1.753 
1.997 
2.289 
2.665 
3.239 

Xi 

0.0 
0.1320 
0.2648 
0.3991 
0.5359 
0.6761 
0.8210 
0.9718 
1.130 
1.299 
1.482 
1.682 
1.908 
2.174 
2.505 
2.977 

0.0640(3 
0.1924 
0.3218 
0.4530 
0.5869 
0.7245 
0.8667 
1.015 
1.171 
1.338 
1.518 
1.716 
1.940 
2.204 
2.533 
3.002 

0.06590 
0.1981 
0.3314 
0.4668 
0.6050 
0.7473 
0.8947 
1.049 
1.212 
1.387 
1.577 
1.788 
2.029 
2.319 
2.692 
3.263 

0.0 
0.1280 
0.2567 

1.000 
0.3634 
0.1902 
0.1188 
0.08218 
0.06065 
0.04686 
0.03744 
0 03069 
0.02568 
0.02185 
0.01885 
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