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Perceptron-Based Learning Algorithms

STEPHEN 1.

Abstract—A key task for connectionist research is the development
and analysis of learning algorithms. This paper examines several su-
pervised learning algorithms for single-cell and network models. The
heart of these algorithms is the pocket algorithm, a modification of
perceptron learning that makes perceptron learning well behaved with
nonseparable training data, even if that data is noisy and contradic-
tory. Features of these algorithms include 1) speed—algorithms are fast
enough to be able to handle large sets of training data; 2) network scal-
ing properties—network methods scale up almost as well as single-cell
models when the number of inputs is increased; 3) analytic tract-
ability—upper bounds on classification error are derivable; 4) on-line
learning—some variants can learn continually, without referring to
previous data; and 5) winner-take-all groups or choice groups—algo-
rithms can be adapted to select one out of ¢ possible classifications.
These learning algorithms are suitable for applications in machine
learning, pattern recognition, and connectionist expert systems.

I. INTRODUCTION

ONNECTIONIST models (or neural networks—the

terms are used interchangeably here) have recently
attracted large numbers of researchers from a variety of
specialities [1]-[3]. Perhaps the key challenge of this field
is the creation of good general-purpose learning algo-
rithms.

This paper presents a review of several algorithms for
supervised learning in discrete connectionist networks that
are variants of the perceptron learning algorithm [4].
Much of this work has appeared previously but is scat-
tered in conference proceedings [5]-[9]; coliecting these
techniques should make them more accessible for work in
neural network learning, pattern recognition, and connec-
tionist expert systems [10], [11]. While primarily a re-
view paper, new simulations are given in Section I1I-A-4
and some new distribution free bounds are also given in
Section VI. This paper is intended to be a sister paper to
[10], with the focus on learning algorithms rather than
inferencing and expert systems.

The main emphasis of this paper will be upon function-
ality rather than upon modeling. The goal is networks that
can perform learning tasks as well as possible, regardless
of ‘‘biological plausibility.”” In other words, there will be
more concern with systems that produce correct responses
than with systems that model human biases and errors.
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The algorithms to be examined have several advantages
over commonly used neural network techniques (such as
back-propagation [12]-[14]), including:

* Speed: Fewer iterations are usually required and
floating point computations can be avoided alto-
gether. In fact, arithmetic operations can easily be
limited to integer addition, subtraction, and compar-
isons.

® Scaling properties: Larger network models and more
training examples can be handled.

® Analytic tractability: Analytic bounds on scaling and
generalization can be derived in many cases, thanks
to the simplicity of the underlying model.

Sections are organized as follows. Section II gives some
basic definitions and details of the connectionist model.
Single-cell algorithms are examined in Section III, and
their generalizations to linear machine algorithms in Sec-
tion I'V. Several methods for constructing network models
that have more than one cell are described in Section V,
and some new generalization bounds are developed in
Section VI. In order to cover many variations of these
algorithms and for ease of reference, an attempt has been
made to be concise so that sections read something like a
reference catalog. For many of these topics more detail
will be given in [15].

II. Basic DEFINITIONS

In supervised learning a set of training examples { E ky
and corresponding correct responses { C*} is presented to
a learning program, which must then model the underly-
ing function. Each example E kis a vector of p inputs:
CE*, EL -+, Ef, y. Except for the linear machine model
of Section IV, each response C* is a single scalar output
(also called an activation). Multiple outputs (and autoas-
sociative or content addressable memories) are easily han-
dled by learning each output cell independently of other
outputs.

Supervised learning should be contrasted with unsuper-
vised learning; the latter assumes that no correct re-
sponses { C*} are provided to a learning program. While
supervised learning can attempt to learn arbitrary func-
tions, the most that can be expected with unsupervised
learning is to cluster the data into similarity groupings
under certain assumptions on the nature of the data.

On-line learning is also of interest. In this paradigm
examples are presented one by one and the algorithm tries
to produce a good (updated) model after each example
without storing previously seen examples.
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Here the standard connectionist assumption will be
made that cell i computes a single activation (i.e., local
output) ¥;, which may in turn serve as input to other cells
and/or be considered as an output of the entire network.
If u; is restricted to a small finite set of values such as
{+1, —1, 0}, then the model is discrete. Alternatively
u; might assume a value in some interval such as [0, 1],
in which case the model is continuous. An important ex-
ample of a continuous model is provided by back-propa-
gation networks [12]-[14]. Rumelhart and McClelland
[1], Anderson and Rosenfeld [2], and Hinton [16] have
surveyed learning algorithms for continuous connectionist
networks.

Algorithms examined in this paper are based upon per-
haps the simplest discrete model, one that has been re-
ferred to as a multilayer perceptron, a gamba perceptron
[17], a linear discriminant network, or a threshold logic
unit network. Here activations are { +1, —1, 0} and cell
i computes its output, u;, by thresholding the weighted
sum of its inputs, S;:

S = wio + 2w
J

+1  ifS >0
w={ -1 ifS <0
0 ifS =0.

The quantity w; o is a constant added to the sum and is
called the bias.

This paper will examine several algorithms that are
variants of perceptron learning [4]. Other discrete models
and learning algorithms have been studied by Nakano
[18], Kohonen [19], Anderson [20], Amari [21], Stein-
buch [22], and Hopfield [23]. These are ‘‘one shot’
learning algorithms that look at every training example
exactly one time. This makes learning very fast but limits
the ability of these algorithms to fit arbitrary sets of train-
ing examples. In these models training example inputs
must be approximately orthogonal or else performance
degrades.

A. Continuous Values

Although the main focus is upon discrete models, it is
important to note that a continuous value, x, can always
be approximated to arbitrary precision by a collection of
discrete activations {u;}. For example a ‘‘thermometer
code,””! where cells represent intervals of the form x =
¢;, can be used. Thus a probability x € [0, 1] might be
represented by

u = +1 ifx = 0.2; otherwise u; = —1
u, = +1 if x 2 0.4; otherwise u, = —1
uy = +1 ifx = 0.6; otherwise u; = —1
u, = +1 if x = 0.8; otherwise uy, = —1

'The term is attributed to B. Widrow of Stanford University.
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so that x = 0.55 would be represented by u; = +1, u,
+1, u3 = —1, and uy = — 1. Other representations (such
as base 2 encodings) are more compact but tend to be
more difficult for learning algorithms to deal with.

Most of the following algorithms allow cell inputs to
be continuous values, even though the cell output is dis-
crete. For example the pocket algorithm (described be-
low) works for rational valued inputs. If training exam-
ples are limited in number and inputs are more naturally
represented as continuous values, then it may be better to
leave inputs continuous rather than ‘‘Booleanizing’’ them
with a thermometer code. Having fewer inputs requires
fewer weights in the model and therefore helps avoid
overfitting a limited amount of training data.

III. SINGLE-CELL MODELS

Networks are assumed to have p inputs, each taking on
values in { +1, —1, 0}, and a single (output) cell with
index p + 1. For all algorithms there is a standard trick
for computing the bias, w, . o. Each training example is
merely augmented with an extra Oth input that always
takes on the value +1. This lets the bias weight w, o
be generated just like the other p weights, w, ., ;, using
methods that assume a bias of 0.

The key algorithm to be discussed is the pocket algo-
rithm [5], a modification of perceptron learning [4], [17],
[24], [25]. Perceptron learning (defined in Section III-A-5
below) is well suited for separable problems, i.e., prob-
lems for which there exists some set of weights {w, , ( ;}
that correctly classifies all training examples. For sepa-
rable problems perceptron learning will find some set of
weights that correctly classifies all training examples after
a finite number of mistakes. The algorithm also works for
infinite sets of training examples with real-valued inputs
if 1) lengths of training examples are bounded, i.e., | E*||
< L for some L and 2) there exists a set of weights,
Wy41. 4 and 8 > O such that all training examples E*

p .
satisfy

ij,,H’jE’-‘Zé for C, = +1
and
%Jw,,ﬂ,,E’f < -6 forC, = —1.

See Minsky and Papert for details [17].

More recently Littlestone [26] has developed the Win-
now algorithm, which is faster than perceptron learning
for separable data when the number of inputs, p, is large
and many of these inputs are not relevant. However if the
number of such irrelevant inputs is not large, then Win-
now can be slower than perceptron learning. Winnow also
requires a problem-specific parameter to be set by the user.

Nonseparable problems are a different story. Since no
set of weights can correctly classify all training examples,
the best that can be hoped for is a set of weights that cor-
rectly classifies as large a fraction of the training exam-
ples as possible. Such a set of weights is called oprimal.
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Note that there are alternatives that do not fit the training
data as well, for example computing weights that give
minimum squared error. Such alternatives are necessary
for algorithms, such as back-propagation, that require a
differentiable error function.

Perceptron learning is not well behaved for nonsepa-
rable problems. While it will eventually visit an optimal
sets of weights, it will not converge to any set of weights.
Even worse, the algorithm can go from an optimal set of
weights to a worst-possible set in one iteration, regardless
of how many iterations have been taken previously (see
Table II below). The pocket algorithm makes perceptron
learning well behaved by adding positive feedback in or-
der to stabilize the algorithm. The Appendix contains a
more precise definition and proof of such stability.

The following subsections present the pocket algorithm
and give several variants for different classes of problems.
Each subsection will present an algorithm and then de-
scribe when that algorithm is most appropriate, give the-
oretical results and generalization bounds, and conclude
with comments.

A. The Pocket Algorithm with Ratchet

I) Applicability: Finite set of training examples. Ex-
amples may be repeated, noisy, and contradictory (E* =
E', ct £ C).

2) Algorithm: The basic idea of perceptron learning is
to take a training example, E¥, that is incorrectly classi-
fied by the current set of weights and to add E to the
current weights if C* = 1 or subtract E* from the current
weights if C¥ = —1.

The basic idea of the pocket algorithm is to run percep-
tron learning while keeping an extra set of weights “‘in
your pocket.”” Whenever the perceptron weights have a
longest run of consecutive correct classifications of ran-
domly selected training examples, these perceptron
weights replace the pocket weights. The pocket weights
are the outputs of the algorithm (see Fig. 1).

As an example of perceptron learning and the pocket
algorithm, consider the xor problem with training ex-
amples

E'={+1 -1 -1y (C'=-1
E’=(+1 -1 +1) C?= +1
E’=(+1 +1 —-1) C*= +1

E*={+1 +1 +1) C*=-1.

(The first entry for each training example is +1 for com-
puting the bias weights.)

Fig. 2 gives a typical sequence of iterations. At itera-
tion 8 both pocket and perceptron weights are optimal,
classifying three out of four training examples correctly.
But at iteration 9 the initial perceptron weights,
{0 0 0), have been reached. These misclassify every
training example whereas the pocket weights,
(I =1 =15, still get three out of four correct. As it-
erations continue, changes to the pocket weights will be-
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INPUT: Training Examples { E*,C* }. E* is a vector with E¥ = 1 and other
components, E¥y, ..., E*,, assuming values in {+1,~1,0}. C* = {+1,-13
is the desired response.

OUTPUT: W = <wpy1,0, Wpi1,1, -
weights where wpy; o is the bias.

TEMPORARY DATA:

*y Wp41,p> is a vector of integral ‘pocket’

« = vector of integral perceptron weights, <, Ty, o, WD, "

run, = number ive correct classifi using perceptron
weights x. i X 3 .

runw = number of consecutive correct classifications using pocket weights
w.

nul.ok,. = total number of training examples that x correctly classifies.
num_okw = total number of training examples that W correctly classifies.

1. Set r=<0,0,---, 0> and
TuR, = runy = num.ok, = numoky = 0.
2. Randomly pick a traini 1
sification C*).
3. If x correctly classifies E*, i.e.
{x-E*>0and C* = +1} or
{z - E* <0 and C* = -1}

* (with ding clas-

Then:
3a. rum, =run, +1.
3b. If run, > runw
Then:
3ba. Compute numok, by checking every
training example.
3bb. (Ratchet:) If num_ok, > num_oky
Then:
3bba. Set W =1
3bbb. Set runw = run,
3bbc. Set num_okw = num_ok,
3bbd. If all training
examples are correctly classi-
fied (ie. numoky = |{ E* }|)
then stop; the training exam-
ples are separable.
Otherwise:
3A. (Change step:) Form a new vector of perceptron
weights
x=x+CEx

3B. Set runw =0
4. End of this iteration. If the specified number of iterations has
not been taken then go to 2.

Fig. 1. Pocket algorithm with ratchet. Perceptron weights, 7, are com-
puted that occasionally replace pocket weights, W.

Iter. L3 Tun, W runw Choice OK? Action

L <0 0 0> 0{<0 0 0> 0 Ef no r=mn—E*
Run, =0

2. <=1 -1 ~1> 0f< 0 0 0> 0 Ef yes Runy, = Run, +1
W=n
Runw = Run,

3. <=1 -1 -1> 1j<-1 -1 -1> 1| E? no r=r+FE’
Run, = 0

1< 0 =2 0> 0|<-1 -1 -1> 1 ET o r=r+ES
Run, =0

-1 -1> 1 FE* yes
-1 1> 1 E? yes

Run, = Run, 4+ 1
Run, = Run, + 1
W=mn

Runw = Run,
Runy = Run, +1
Runw = Run,
T=n—EF

Run, =0

5. <1 =1 1> 0|<-
6. <1 -1 -1> 1|<

<1 -1 -1> 2 E3 yes

8. <1 -1 -1> 3|< 1 -1 -1> 3 ET no

9. <0 0 0> 0j< 1 -1 -1> 3

Fig. 2. Pocket algorithm iterations.

come less and less frequent. The time between such
changes increases exponentially with respect to Runy.
Most of these changes will replace one set of optimal
weights by another; for example (1 1 1) is another set
of optimal weights. From time to time, however, nonop-
timal weights will appear in the pocket, but the next theo-
rem states that this will happen less and less frequently as
the number of iterations increases.

3) Theory:

Theorem 1: Given a finite set of input vectors { EX}
and corresponding desired responses { C*} and a proba-
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bility P < 1, there exists an N such that after n = N
iterations of the pocket algorithm, the probability that the
pocket coeflicients are optimal exceeds P.

Proof: See the Appendix.

4) Generalization Bounds and Simulations: (see Table
III for distribution-free generalization bounds): Previous
experiments [5] have indicated that the pocket algorithm
is better able to fit a set of training examples than a stan-
dard statistical method, Wilks method, as implemented in
SPSS-X [27]. Experiments indicated that roughly 20%
fewer errors were made on the training data.

To give some idea of generalization differences, three
new experiments were run with results summarized in
Table 1. The first used weather data of Osaka to predict if
Tokyo would receive rain the next day.? The second set
consisted of (proprietary) financial data.® The final test
was parity-5, training only, using all 32 examples.*

Note in Table I the higher classification rates on both
training and testing data for the pocket algorithm with
ratchet compared with perceptron learning. The standard
deviations are given in parenthesis and suggest greater
stability for the former algorithm. To give some idea of
speed, 30 000 iterations of the parity-5 problem consume
about 30 s on a Sun 4.

Also note that for large sets of training examples the
bounds in Table III indicate that generalization percent-
ages will be close to training percentages, so that being
able to fit the training data is most important.

5) Comments:

¢ If branches 3a and 3b are removed, then the resulting
algorithm is perceptron learning ( with output vector
w rather than W). Note that the change step (3A)
merely adds or subtracts the current training example
to the perceptron weights depending upon whether
the correct response, C* is +1or —1.

If the training examples are separable, then only a
finite number of mistakes (i.e., executions of the
change step, 3A) can be made before pocket weights
are optimal. This is the perceptron convergence theo-
rem [4], [17].

The ratchet check, step 3bb, ensures that whenever
pocket coefficients W are changed (in step 3bba) they
are strictly better than the previous weights. Thus the
quality of the weights ‘‘ratchets up.”’

ZEvery three consecutive days for a year were randomly divided into
two days for training and one for testing, giving 247 total training examples
and 127 total test examples. Each example had eight real-valued inputs,
each of which was normalized and rounded to integers in the range [— 100,
+100]. The output was Boolean. Fifty thousand iterations were performed
for each algorithm using ten different random seeds (to change the order of
selection of training examples). Data courtesy of R. Nakano and K. Saito
of Knowledge Systems Lab, NTT Information Processing Labs, Yokosuka,
Japan.

*There were 1564 training examples and 814 test examples, each with
29 Boolean inputs. Again 50 000 iterations were performed for each al-
gorithm using ten different random seeds.

*Thirty thousand iterations were performed for each algorithm. Optimal
performance is 69 %, which the pocket algorithm with ratchet achieved on
eight of ten trials.
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TABLE I
COMPARISON OF PERCEPTRON LEARNING AND POCKET ALGORITHM WITH
RATCHET: AVERAGES AND STANDARD DEVIATIONS ARE COMPUTED OVER
TEN TRrIALS EACH

Perceptron Pocket+Ratchet

Train % Test % Train % Test %
Weather Data 1.3% 67.0 % 80.9 % 76.6 %
(11.0) (10.0) (0.5) (1.8)
Financial Data | 54.4% 513% | 625% 63.6 % ‘
(3.6) (7.5) (1.0) (1.6)
Parity-5 Data [ 43.0 % — 65.8 % — |
(5.9) - (6.5) -

e There is no good way of specifying how many iter-
ations to run; in fact, the problem of deciding whether
data are separable or nonseparable is not easily
bounded [25] unless polynomial linear programming
techniques are employed. However, the following
procedure may be helpful. Start with i = 10 000 it-
erations. If weights are changed (step 3bba) for any
iteration after the first i /5 iterations, then at the end
of this set of iterations run another set of i additional
iterations with i now increased to 1.5i. Continue in
this manner until a set of iterations is run with no
weight replacement during the last 0.8i iterations. For
example a weight replacement at iteration number
3800 would trigger 15 000 more iterations after the
first 10 000 were completed. If there were a weight
replacement at iteration 4500 of the new set, then an
additional 22 500 iterations would be run after the
second set of 15 000 was completed.

The number of iterations required to produce an op-
timal set of weights is prohibitively large for most
problems. However, experience [5], [9], including
the Table I simulations above, indicates that good
weights are produced using reasonable amounts of
computation time.

Yoshida et al. [28] created a medical connectionist
expert system using the pocket algorithm and com-
pared its classification performance with a standard
statistical packet, SAS ‘DISCRIM’ [29]. They found
improved testing (71.8% versus 63.2% ) and training
(91% versus 67% ) performance for the pocket al-
gorithm. There were 334 training examples and 163
test examples, each with nine continuous inputs (rep-
resented as 27 discrete values) and four possible dis-
ease classification outputs.

Mooney et al. [30] compared standard perceptron
learning, back-propagation, and Quinlan’s ID3 [31]
(a decision tree method) and reported that perceptron
learning performance was ‘‘hardly distinguishable’’
on four of the five tests they ran and that on the fifth
test it did ‘‘about as well as ID3’’ (but not as well as
back-propagation with additional intermediate cells).
Training times were reported as one to two orders of
magnitude faster than back-propagation.
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INPUT: Training Examples { E*,C* }. E* is a vector with £} = 1 and other
components, E¥y, ..., E*,, assuming values in {+1,-1,0}. C* = {+1,-1}
is the desired response. Examples do not reside in memory but are produced

by-one (sampling with repl: t) whenever needed.

OUTPUT: W = <wpy1,0, Wpyr1, -
weights where wp4,  is the bias.

» Wp41,p> is @ vector of integral ‘pocket’

TEMPORARY DATA:

x = vector of integral pelceptron weights, <o, @y, -y Tp>.
1

run, = number of cc ve correct tions using perceptron
weights . X .

runy = number of consecutive correct classifications using pocket weights
w.

1. Set m=<0,0,---,0> and
Iruny = runy = num_ok, = num ok = 0.
2. Obtain a training example E* (with corresponding classifica-
tion C*).
3. If r correctly classifies E*, i.e.
{z-E*>0and C* = +1} or
{z-E* <0and C* = -1}
Then:
3a. run, =run, + 1.
3b. If run, > runy
Then:

3ba. Set W=n
3bb. Set runy = run,
Otherwise:
3A. (Change step:) Form a new vector of perceptron
weights
==+ CtE*
3B. Set runy =0
4. End of this iteration. If the specified number of iterations has
not been taken then go to 2.

Fig. 3. Pocket algorithm for oo training data. Training examples are not

stored. .

B. The Pocket Algorithm For o Training Data

1) Applicability: Training data that are not simulta-
neously available in storage due to on-line learning or
simulated noise. This is referred to as o training data.

2) Algorithm: This algorithm is the same as the pocket
algorithm with ratchet, except that no ratchet check can
be performed because not all examples are held in storage
(see Fig. 3).

3) Theory and Generalization Bounds: Same as Sec-
tions III-A-3 and III-A-4.

4) Simulated Noise: Sometimes a process can be mod-
eled by a relatively small set of noise-free training ex-
amples and a probabilistic noise model; yet generating an
exhaustive set of noisy training examples would require
too much storage. There are two approaches for handling
such problems. One is to generate a large but manageable
set of ngisy training examples and use the pocket algo-
rithm with ratchet. The other is to use the pocket algo-
rithm for oo training data and to dynamically generate
training examples as needed.

Using the ratchet in the first approach fas the advantage
of producing a better fitting model, but for a smaller sam-
ple of data. The second approach allows more training
examples to be used and reduces storage requirements.
Both give a simple way to test resulting coefficients against
new data: merely turn off the learning for a batch of new
test data. Such testing gives closer estimates than the dis-
tribution-free bounds of Section VI and takes advantage
of the inexhaustible supply of data.
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INPUT: Training Examples { E*,C* }. E* is a vector with Ef = 1 and other
components, E¥y, ..., E*,, assuming values in {+1,-1,0}. C* = {+1,-1}
is the desired response. The first r training examples are rules that must not
be violated by the pocket weights.

OUTPUT: W = <wpi1,0, Wpp1,1, - -
weights where wp41 0 is the bias.

TEMPORARY DATA:

x = vector of integral perceptron weights, <, 7y, -+ +, >,

run, = number of consecutive correct classlﬁcahons usmg perceptron
weights 7. . X

runy = number of consecutive correct classifications using pocket weights
w.

num_oky = total number of training examples that x correctly classifies.

num.oky = total number of training examples that W correctly classifies.

Wp41p> is a vector of integral ‘pocket’

1. Set r=<0,0,---,0> and
runy = runly = num_oky = num oky = 0.

2. Let 7 be the current perceptron weights. If 7 does not satisfy
all r rules, then pick E* to be any rule that is misclassified; oth-
erwise select E* k > r, at random from the remaining training
examples. Let C* be the corresponding correct classification
of E*.

3. If m correctly classifies E*, i.e.

{x-E*>0and C* = +1} or
{r - E*<0and C* = -1}
Then:
3a. run, =run, + 1.
3b. If run, > runy
Then:
3ba. Compute num_ok,
training example.
3bb. (Ratchet:) If num ok, > num_okwy
Then:
3bba. Set W =1
3bbb. Set runy = rum,
3bbc.  Set num.oky = num_ok,
3bbd. If all training
examples are correctly classi-
fied (i.e. numoky = [|{ E* }|)
then stop; the training exam-
ples are separable.

by checking every

Otherwise:
3A. (Change step:) Form a new vector of perceptron
weights
r=mr4 CtEE
3B. Set runw =0
4. End of this i If the ified b

P of iterations has
not been taken then go to 2.

Fig. 4. Modification to the pocket algorithm to accommodate rules.

C. The Pocket Algorithm with Rules and Examples

1) Applicability: The first r examples, {E', EZ,
-+ -, E"}, are considered to be rules that must not be
violated by the pocket weights. The goal is weights that
correctly classify as many training examples as possible
while making no mistakes on any of the r rules. It is as-
sumed that the rules constitute a separable set of training
examples.

2) Algorithm: The pocket algorithm is modified so that
after the perceptron weights change, only misclassified
rules are selected for iterations until all rules become cor-
rectly classified (see Fig. 4).

3) Theory: The pocket convergence theorem is easily
extended to accommodate rules.

4) Comments:

 The rule modification can be used with the ratchet or
the o example version of the pocket algorithm. The
change to step 2 prevents any set of invalid percep-
tron weights from ever becoming pocket weights.

* For the finite training example case, another way to
implement rules is to make several copies of the r
rules and add them to the set of examples before ap-

T [
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plying the pocket algorithm with ratchet. If enough
copies are added it will become too expensive for a
set of weights to misclassify any of these rules.

IV. LINEAR MACHINES

Linear machines, sometimes called winner-take-all
groups or choice groups, are credited to Nilsson [24],
[25], [32]. They are generalizations of single-cell models
where several cells compete to determine which one of
them will fire (output = +1) while all remaining cells do

not fire (output = —1). Fig. 5 illustrates the situation.
The c cells, numberedp + 1,p + 2, -+, p + ¢, com-
pute weighted sums
S, = 2 W, jU;
j=0

as before, but the single cell that fires is determined by
the first cell with the highest weighted sum:

S,>Sj
+ 1 if
u; = S = S;

J

fori > j and
Cfori < j

—1  otherwise.

Training example outputs, C*, are each ¢ vectors consist-
ing of ¢ — 1 components of —1 and one component of
+1.

Linear machines are very handy for pattern recognition,
fault detection, and any other problem where input vec-
tors must be classified into one of ¢ categories. It is well
worth emphasizing that, despite their name, linear ma-
chines do not compute linear functions of their inputs.

Thie following facts are either well known or easily
proved:

1) Single-cell models can be represented as 2-cell lin-
ear machines.

A 2-cell linear machine can be represented by (and
hence is equivalent to) a single-cell model [24],
[25].

For ¢ > 2, the output patterns from a c-cell linear
machine need not be representable by ¢ indepen-
dent single-cell models. For example the last cell
in Fig. 5 computes the xor function. It can be
shown that the final cell in a linear machine with
at most 27 cells can be made to compute any Boo-
lean function (without adding intermediate cells).
For any linear machine and any cell i where (p +
1 =i = p + c¢) there exists an equivalent linear
machine where cell i has all weights and bias equal
to 0 (i.e., w;; =0forj=0,1, ---, p). (For
example cell 3 in the figure has all 0 weights.)
The problem of learning weights for a linear ma-
chine with ¢ cells and p inputs using T training ex-
amples can be converted to a problem of learning
weights for a single-cell model with cp inputs and
¢T training examples. This is due to a construction
by Kessler [25].

The next task is to extend the single-cell learning al-
gorithms to linear machines.

2)

3)

4)

5)
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u, chosen to fire

Outputs: one "+1"
rest "-1"

u
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sample inputs
Fig. 5. Linear machine. The numbers inside the circles are biases.

Winner-Take-All Group
(output cells)

Input Cells

A. The Pocket Algorithm with Ratchet for Linear
Machines

1) Applicability: Classifying input vectors into one of
¢ possible groups. The network model is generated from
a finite set of training examples. Examples may be re-

peated, noisy, and contradictory.

2) Algorithm: Two modifications are needed to apply

the pocket algorithm to linear machines. First a percep-

tron weight change consists of adding the current example
to the weights for the desired output cell and subtracting
the current example from the weights of exactly one of

the other cells that had at least as large a weighted sum.

The second modification is that for pocket weight changes
the weights from all ¢ perceptron cells are put into the

pocket as a group (see Fig. 6).

3) Theory: The pocket convergence theorem general-

izes to linear machines in the obvious way. The key ar-

gument is that the perceptron convergence and perceptron
cycling theorems generalize to linear machines because of

fact 5) above. The proof is omitted.

4) Generalization Bounds: See Table III for distribu-
tion-free generalization bounds.

5) Comments:

® As with single-cell models, the algorithm usually will
not produce optimal weights for nonseparable prob-
lems unless prohibitively many iterations are run.
Nevertheless in practice the algorithm can be ex-
pected to produce good weights with reasonable
computational effort. As an example, tests reported
in [9] consistently gave at least 85% of the optimal

performance.

® The linear machine model with c cells generally gives
better results than training ¢ independent single-cell
models because exactly one of the ¢ cells is guaran-

teed to be selected.

B. The Pocket Algorithm for Linear Machines with o
Training Data

1) Applicability: Classifying input vectors.into one of
¢ possible groups. Training data are not simultaneously
available in storage due to on-line learning or-simulated

noise.
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GALLANT: PERCEPTRON-BASED LEARNING ALGORITHMS

INPUT: Training Examples { £%,C* }. E* is a vector 'with E§ = 1 and other
components, E¥y, ..., E¥,, assuming values in {+1,~1,0}. C* is an output
vector with ¢ entries, C",,H, sy C',,ﬂ, one of which is +1 and the other
¢ — 1 taking value —1.

OUTPUT: c cells Wpi1, Wpya, -, Wpyc where Wi = <wio, w;y, -
a vector of integral ‘pocket’ weights and w; o is the bias.

, Wip> is

TEMPORARY DATA:

m = ¢ vectors of integral perceptron weights, @,41,Mp42, * -+, Tpye, Where

each vector x; = <Ti0y Wil ooy WipD> .
run, = number of consecutive correct classifications using perceptron
weights .

runw = number of consecutive correct classifications using pocket weights

nun_ok,,‘ = total number of training examples that = correctly classifies.
num_oky = total number of training examples that W correctly classifies.

1. Set 7 =<0,0,---,0>fori=p+1,...
run, = runy = num-ok, = num.-oky = 0.
2. Randomly pick a traini ple E* (with corresponding clas-
sification C*).
3. If » correctly classifies E*, i.e. if the correct class is i and
{x-E* > xj. E* for i # j}

pto

&

Then:
3a. run, = run, + 1.
3b. If run, > runw
Then:
3ba. Compute numok, by
training example.
3bb. (Ratchet:) If num ok, > num oky
Then:
3bba.

checking every

Set W = x. Note that all ¢
of the vectors are replaced at
once.
3bbb. Set runw = run,
3bbc. Set num_okw = num_ok,
3bbd. If all training
examples are correctly classi-
fied (i.e. numoky = [{ E* }|)
then stop; the training exam-
ples are separable.
Otherwise:
3A. (Change step:) Form a mew vector of perceptron
weights. If C*; = +1 then select one cell j # i that
satisfies 7; - E* < x; - E* and modify the weights of
cells i and j as follows:
m o=+ E*
=W — E*
3B. Set runy =0
4. End of this iteration. If the specified number of iterations has
not been taken then go to 2.

Fig. 6. The pocket algorithm with ratchet for linear machines.

2) Algorithm: See Fig. 7.

3) Theory: The pocket convergence theorem holds as
before. There is also an interesting relationship between
linear machines and optimal Bayesian decision rules for
noisy pattern recognition and fault-detection problems.
Consider the problem of trying to classify a pattern of p
Boolean inputs into one of ¢ classes under the following
restrictions:

1) Each class has some fixed (prior) probability of oc-
currence. .

2) In the absence of noise each class corresponds to a
single pattern among the p inputs. Thus there would
be only c possible input patterns if noise were not
present.

3) Inputs are independently corrupted by noise accord-
ing to a fixed set of error probabilities {P;}, with
each P; < 1/2. If the correct class for a pattern is
i, then the probability its jth feature will be inverted
is P;. (Every input feature E]" is +1.) Note that if
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INPUT: Training Examples { E¥,C* }. £* is a vector with £} = 1 and other
components; E*y, ..., E"p, assuming values in {+1, —1,0}. C* is an output
vector with ¢ entries, C"P“, ey C",,+¢, one of which is +1 and the other
¢ — 1 taking value —1. Examples do not reside in memory but are produced
one-by-one (sampling with replacement) whenever needed.

OUTPUT: ccells Wy, Wpy2, -+, Wpyo where Wi = <wjo, wip, -, wip> is
a vector of integral ‘pocket’ weights and w; ¢ is the bias.

TEMPORARY DATA: o
T = c vectors of integral perceptron weights, xpy1,mpy2, -

each vector m = <m0, M1, <-v, Wip> . .
run, = number of consecutive correct classifications using perceptron

weights 7. X .
Tunw = number of consecutive correct classifications using pocket weights

w.

1. Setm =<0,0,---,0>fori=p+1,...,p+¢
Iun, = runy = num_ok, = num okw = 0.
2. Obtain a training example E* (with corresponding classifica-
tion C*).
3. If r correctly classifies E*, i.e. if the correct class is i and
{m E* > E* for i £ j}

) Tp+e, Where

Then:
3a. rum, =run,+ 1.
3b. H run, > runw
Then:
3ba. Set W = . Note that all ¢ of the vectors
are replaced at once.
3bb.  Set runw = run,
Otherwise:
3A. (Change step:) Form a new vector of perceptron
weights. If C*; = +1 then select one cell j # i that
satisfies ;- E* < x; - E* and modify the weights of
cells i and j as follows:
i =m + E*
o= - E*
3B. Set runy =0 .
4. End of this iteration. If the specified number of iterations has
not been taken then go to 2.

Fig. 7. The pocket algorithm for linear machines with oo training data.

all P; > O then any input pattern might correspond
to any class (perhaps with very low probability).

The task is to determine the most likely classification
based upon a noisy input pattern.

It is well known [32], [25] that the optimal Bayesian
decision rule for this problem can be expressed as a linear
machine (see also [9]). Furthermore it is possible (in the-
ory) to represent all possible noisy inputs and correct
classes by a finite set of training examples that faithfully
preserves their respective probabilities. (Of course this is
not practical due to the astronomical number of training
examples that would be required.) This argument shows
that if the pocket algorithm is presented with noisy train-
ing examples along with their correct classifications, then
the weights the algorithm produces will converge (in
probability) to weights that implement the optimal Baye-
sian decision rule in a linear machine. It is also possible
to incorporate prior probabilities and costs by adjfisting
the frequency according to which training examples are
chosen. For more on this topic see [8] and [9].

V. NETWORK MODELS

This section examines the problem of data-fitting with
a network rather than a single-cell model. Of course the
only reason to use a network is to fit the training exam-
ples—and hopefully the actual data—more closely than
would be possible with a single cell.

Two assumptions are made. First it is assumed there is

T [
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no prespecified network topology, so that any network is
acceptable if it performs the learning or pattern recogni-
tion task.’

It is also assumed that a certain continuity or ‘‘robust-
ness preserving’’ property is desirable:

An unseen input E that is very close (in Hamming dis-
tance) to a training example E* usually will produce
the same output as E* from the network.

The qualification ‘‘usually’’ serves to avoid an overly
strict application of this principle that would rule out
everything except nearest neighbor algorithms.

The following algorithms are motivated by an ‘‘engi-
neering approach’’: decompose the problem and use pre-
viously developed algorithms wherever possible. In fact
these two algorithms reduce the network learning problem
to a single-cell problem (with close to single-cell speed).
Both approaches work with any of the variants of the
pocket algorithm (including the linear machine version)
of Sections III and Section IV.

The distributed method uses a single layer of d inter-
mediate cells with fixed randomly generated weights as in
Fig. 8. Note that the single top cell sees both the original
inputs and the activations from the intermediate cells. The
intermediate cells create a distributed representation [33]
in a higher dimensional space. Thus each example will
have p + d rather than p features. As Cover [34] has
shown, this makes a set of training examples more likely
to be separable and hence easier to learn. )

The second approach is the tower algorithm, illustrated
in Fig. 9. Initially a single-cell model is generated, these
weights are frozen, and then a new trainable cell is added
that sees the original inputs plus the activations from the
cell immediately below. Continuing in this fashion the
output from each level improves upon that of the previous
level under conditions discussed in Section V-B below.

“

A. Distributed Method

1) Applicability: Fitting finite or oo training data better
than is possible with a single-cell model. Examples may
be repeated, noisy, and contradictory.

2) Algorithm: See Fig. 10.

3) Theory and Generalization Bounds: See Section VI.

4) Comments:

* Experience has shown the distributed method to be a
much quicker way to fit data than back-propagation;
the speed ratio is typically one to three orders of
magnitude. Learning speed is critical for real-world
problems that are data rich, because a faster algo-
rithm can fit larger sets of training data and the
amount of training data modeled can be the most im-
portant consideration when fitting data. Thus learn-
ing speed affects generalization for data-rich prob-
lems(!).

SThe back-propagation algorithm for continuous network models is more
appropriate for the harder problems where network topology is prespeci-
fied.
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m—lp  Trainable Weights

—  » Randomly Generated Weights

Output Cell

Distributed Cells

Input Cells

Fig. 8. The distributed method.

/

@ Output Cell

@8- @

Input Cells
Fig. 9. The tower algorithm.

1. Generate a layer of d intermediate cells just above the input layer as
in figure 8. Each intermediate cell sees all p input cells and has integer
weights and bias generated at random in some range [~ K, K]. Once
generated these distributed cell weights do not change.

[}

. Remaining cells in the network use single-cell or linear machine learn-
ing algorithms. Note, however, that their inputs now include the out-
puts from the newly added distributed cells.

Fig. 10. Algorithm for the distributed method.

Recently this viewpoint has been supported in two
pattern recognition studies [35], [36]. Hayashi ez al.
obtained over 99.5% generalization rates on multi-
font character recognition using the distributed
method. Large amounts of training data were mod-
eled: 20 000 examples, each with 272 inputs and 60
to 90 outputs. They reported that it would not have
been practical to use back-propagation with such
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large amounts of data.® Three of their main findings
were:

1) The more training examples the better the gen-
eralization.

2) A suitable number of iterations for this problem
was about ten times the number of training ex-
amples.

3) For 16 X 16 input grids (plus some additional
features) a suitable number of distributed cells
was about 3p, i.e., half the total number of in-
put cells.

® On the other hand if a prespecified network topology
is required or if the number of cells in the network
must be minimized, then back-propagation would be
a better choice than the distributed method.”

® The distributed method is ‘robustness preserving’’
by the following argument. Let E and E’ be two in-
puts that are close (i.e., || E — E'|| /p is small). Then
a distributed cell i will tend to produce the same out-
put for E and E' because their weighted sums, S¥ and
SE, will tend to agree in sign. (This argument was
formalized by Amari [37], [38].) As for output cells
in the network, their input patterns for E and E’ will
also be close (since most of the distributed cell out-
puts will agree). Thus their activations will also tend
to agree for E and E’, establishing the robustness-
preserving property of the network.

® Types of cells other than threshold logic units with
randomly generated coefficients can be used for dis-
tributed cells, provided such cells help separate sets
of inputs while tending to agree on similar input sets.
Radial basis functions used by Renals and Rohwer
[39] provide one example. Another example is Ka-
wahara’s [40] use of clustering algorithms on the ex-
amples to generate intermediate cells.

® Precomputing the activations for all distributed cells
is an important computational speedup for finite sets
of training examples.

¢ It can be advantageous to make several tries to fit
data using different randomly generated weights for
distributed cells. See Section VI and [41].

B. The Tower Algorithm

The tower algorithm employs single-cell learning to
build a tower of cells, where each cell sees the original
inputs and the single cell immediately below. Fig. 11
gives the algorithm and Fig. 12 shows the algorithm ap-
plied to the parity-5 problem. (This computation took well
under 1 minute on a Sun 3.) i

1) Applicability: Fitting finite or oo training data better
than is possible with a single-cell model. Examples may
be repeated, noisy, and contradictory.

Personal communication.

"The fact that back-propagation uses continuous rather than discrete ac-
tivations is glossed over here. However, weights produced by back-prop-
agation can be used in discrete models and weights produced by the dis-
tributed method, pocket algorithm, etc., can be used in some continuous
models.
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1. Use the pocket algorithm to generate a single-cell model and freeze
these weights.

2. Create a new cell that sees the p inputs to the network and the acti-
vation from the cell that was most recently trained. Run the pocket
algorithm to train the p + 2 weights (including bias) for this cell.

3. If the network with this added cell gives improved performance, then
freeze its coefficients and go to step 2; otherwise remove this last added
cell and output that network.

Fig. 11. The tower algorithm.

. bias inl in2 in3 in4 in§ tvl tv2
Tower Var. i for parity: 0 -2 -2 -2 -2 2 0 0
Tower Var. 2 for parity: 1 3 3 3 3 -3 6 0
parity (output): ] -2 -2 -2 -4 2 0 9

Fig. 12. Sample solution for parity-5 with two intermediate cells found by
the tower algorithm.

2) Algorithm: See Fig. 11.

3) Theory:

Theorem 2: For noncontradictory sets of training ex-
amples with input values restricted to { +1, —1}, the
tower algorithm will fit the data with arbitrarily high prob-
ability, provided enough iterations are taken at each step.

Proof: This is easy to see because an n-cell model
that misclassifies example E* can be made into an n + 1
cell model that correctly classifies EX and leaves other
classifications unchanged. To show this, let C¥ = +1 be
the correct classification of E*. Now set
CHEF

Wntt,j = fOI‘j = la Y 4

wn+l,n =p
_ k
Wasr0 = C

For example Fig. 13 gives a cell that copies the classifi-
cation of the cell immediately below, except that E k=
(-1, +1, +1, —1) now produces output Cck=-1.
The pocket algorithm converges on an optimal set of
weights; therefore such an optimal set must correctly clas-
sify at least one more training example than the previous
n-cell network because such a network has been con-
structed. This establishes the claimed theoretical conver-
gence of the algorithm. (]
4) Comments:

® In practice the tower algorithm can get bogged down
when presented with large amounts of data because
not enough iterations can be made to ensure an op-
timal solution at each step. Also there is no easy for-
mula for how many iterations to run at each level.
For these reasons the distributed method seems pref-
erable for creating networks from data. Also the dis-
tributed method tends to be faster than the tower al-
gorithm.

¢ The construction in Fig. 12 suggests how parity p can
be computed with n = [(p + 1)/2] intermediate
and output cells and n(p + 1) + n — 1 weights.
The algorithm discovered this fact(!); the author had
thought that p intermediate and output cells would be

T T [
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Y

Fig. 13. The added tower cell classifies E* = ( —1, +1, +1, —1) as
false (—1) and copies u, for other inputs.

(=2

required for the parity p problem until he tested the
algorithm.

¢ Linear machines can be used at each stage in place
of single-cell models.

VI. ANALYTIC BOUNDS

A previous paper {41] analyzed a generalization of the
distributed method called the BRD (bounded, random-
ized, distributed) Algorithm. This algorithm differs from
the distributed method by making up to T tries to fit data
with distributed networks rather than only 1 try. By spe-
cializing the BRD bounds it is possible to compute gen-
eralization bounds for the algorithms that were presented
in previous sections.

A. Notation and Theorem

Notation is given in Table II.

Theorem 3 (Gallant [41]): Let T distributed networks,
each with d intermediate cells, be generated. Suppose one
of these networks with top cell length L misclassifies a
fraction € > 0 of the E training examples. For any ¢ >
e’ let s = (¢ — €°) /e be the slack between e and the mea-
sured error €. If the number of training examples E is
larger than the minimum of

8
—5 - max
S°e

4(pd +2d + p + 1) log (e(d + 1))}

8 .
In —, min

; {2(p + Td + 1),

16

l -
n S2E:l
1
in{—,2
{12]

and

1n%+(d +p+1)In(TQ2L + 1))

S2€
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TABLE 11
NOTATION FOR ANALYTIC BOUNDS

E Number of training examples in the training set. Training ex-
amples are assumed to be selected one-by-one with replacement.

€ Actual error of a network. ¢ gives the probability that a sample
drawn from the total collection of data will be misclassified.
Data may be noisy and may contain repeated and contradictory
examples.

€° Measured error on the training set of E examples.

s Slack between measured error and actual error, s = 5‘550

1-6 Confidence that the model will fit with error at most €.

T Number of tries using the distributed method to fit the data.
(T = 1 for the distributed method on a single-cell model as
previously described.)

P Number of input cells.

d Number of distributed cells in the intermediate layer of cells.
d = 0 for a single-cell model.

¢ Number of output cells for linear machines or number of inter-
mediate and output cells for the tower algorithm. ¢ = 1 for
single-cell models.

L Length of the weight vector for the top cell
L=|wl= \/Egﬂd -

log Logarithm base 2.

Logarithm base e.
Base of the natural logarithm.

then with confidence at least 1 — 6 that network will have
actual error at most €.

If some model correctly classifies every training ex-
ample (e = 0) then the conclusion holds if

Ez—_ﬁ_—e)[lnT+{(d+p+1)

1
‘(2L + 1)} + 1n <3>]
B. Bounds

From Theorem 3 the required number of training ex-
amples, E, can be derived for a given confidence (1 — §)
and error € as follows:

1) For single-cell models (pocket algorithm with
ratchet or oo training data or rules) specialize Theo-
rem 3.

For linear machines with ¢ output cells and p input
cells it is known by Kessler’s construction [25] that
there exists an equivalent single-cell problem with
c¢(p + 1) input cells and bias of 0. The single-cell
model can be further simplified by subtracting the
first p + 1 weights from each of the sets of ¢ weights
leaving a single-cell model with at most (¢ — 1)(p
+ 1) adjustable weights and O bias. This allows
substitution into the single-cell bound with p’ = (¢
— 1)(p + 1) — 1 to derive generalization bounds
for linear machines.

For the distributed method use Theorem 3 with T =
1.

For the tower algorithm a general network bound
due to Baum and Haussler [42] is used. This bound
also gives part of the bound of Theorem 3.

2)

3)

4)
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TABLE I
BOUNDS FOR VARIOUS ALGORITHMS

Model and Number of examples, F, required for
confidence (1 — §) and error ¢ where s = (¢ — €°) /e

Single-Cell Models:
pocket algorithm with ratchet
pocket algorithm for co training data
pocket algorithm with rules

Minimum of:

;,s? max [ln %, min{2(p + 1), 4(p + 1) loge} In ﬁ%]
or
1

In}Hp+U)In(2L1)
i min ﬁ,2}

Linear Machine Models

Minimum of:

¢ max [ln %, min{2(c - 1)(p+ 1), 4(c — 1)(p + 1)log e} In 3&

or
In ;+(c=1)(p+1) In{2L+1]
_L_:;—s—)mi“ %5'72}

Distributed Method

Minimum of:

2 max [In §, min{2(p + Td + 1), 4(pd + 2d + p + 1) log(e(d + 1))} In 3]

or
In & +(d4p+1) In(T(2L+1))
l—,—P e min {2%,2}

Tower Algorithm

= max [ln %, 4(c(p + 2) - 1)log(ec)in 3

TABLE IV
SOME SAMPLE DISTRIBUTION-FREE BOUNDS ON THE NUMBER OF TRAINING
EXAMPLES REQUIRED TO ENSURE GENERALIZATION

Model e € s & p L ¢ d T Examples
single-cell 20 10 50 9 10 30 1 0 1 1813
linear machine .20 .10 50 9 10 100 3 0 1 4671
distributed 20 .10 50 9 10 S50 1 5 10 4432
tower 20 .10 50 9 10 040 1 597346
single-cell 15 10 33 9 10 30 1 0 1 5439
linear machine .15 .10 .33 9 10 100 3 0 1 14013
distributed 15 .10 33 9 10 50 1 5 10 13295
tower 15 .10 33 9 10 0 4 0 1 2133342
single-cell 10 05 50 9 100 30 1 0 1 3626
linear machine .10 .05 .50 .9 10 100 3 0 1 9342
distributed 10 05 50 9 10 50 1 5 10 8863
tower 10 .05 .50 9 10 040 1 1338251

C. Comments

As an example of how these numbers scale, the bounds
for several typical cases are computed in Table IV. Note
that distribution-free bounds are very conservative and
that alternatives have been proposed, for example by Bun-
tine [43]. Also note that the bound for the tower algorithm
appears very loose and that a significantly lower distri-
bution-free bound may be possible.
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VII. DIscussION

A number of simple, fast, and analytically tractable
variants of the pocket algorithm modification to percep-
tron learning have been examined. Their advantage over
pure perceptron learning is their ability to handle nonse-
parable, noisy, and contradictory data.

It is important to try to characterize those problems that
are more suitable for perceptron-based learning algo-
rithms and those that are more suitable for the widely used
back-propagation algorithm. Because of speed, the per-
ceptron-based algorithms seem preferable for data-rich,
large-scale problems that are essentially discrete in na-
ture. These algorithms are also recommended for gener-
ating networks to be used in connectionist expert systems
as described in [10], because inferencing and rule gener-
ation are much simpler without the back-propagation sig-
moid function.

By contrast if a problem constrains the network topol-
ogy (number of cells and their connections), then back-
propagation is the only choice for generating weights.
Back-propagation also seems preferable for problems with
mostly continuous data, particularly if the network out-
puts are continuous.

It is difficult to compare the algorithms for the case
where training data are limited and where generalization
to unseen data is of primary importance.

In conclusion it is worth noting that a number of re-
searchers are experimenting with perceptron-based algo-
rithms and creating still other pocket algorithm variants.
For example Buntine [44] has added a ‘‘pocket’’ to Lit-
tlestone’s Winnow algorithm, Utgoff [45] has experi-
mented with combining the pocket algorithm with deci-
sion trees, and Mézard and Nadal [46] have looked ‘at
network generation methods that use the pocket algo-
rithm. It seems likely that such algorithms will play an
important role in machine learning, connectionist expert
systems, and pattern recognition applications.

APPENDIX
ProoOF oF THE POCKET CONVERGENCE THEOREM

Theorem 1: Given a finite set of input vectors { E*}
and corresponding desired responses {C*} and a proba-
biltiy p < 1, there exists an N such that aftern = N
iterations of the pocket algorithm, the probability that the
pocket coeflicients are optimal exceeds p.

The proof is in several steps:

1) Only a finite number of sets of coefficients can be
reached using perceptron learning. This is a restatement
of the perceptron cycling theorem [17], [47].

2) From any such set of coefficients there is a nonzero
probability that perceptron learning will visit an optimal
set of coefficients (perhaps after several steps).

Let 7 be the current set of coefficients. Choose any op-
timal set of coefficients and the subset, S, of training ex-
amples for which it produces correct responses. By the
perceptron convergence theorem [4], [17] if inputs from
S are repeatedly chosen, in finite time perceptron learning
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will go from 7 to 7’ where 7' are coefficients that give
desired responses for all inputs in S. Thus «' must be an
optimal set of coefficients for all of { E*}.

Since there is a nonzero probability that this exact se-
quence of vectors in S may be chosen when vectors from
E are chosen randomly, an optimal solution can be reached
from 7 with nonzero probability.

3) As the number of iterations grows, perceptron
learning will visit optimal sets of coefficients a nonzero
fraction of the time.

This follows directly from 1) and 2). Fig. 14 which
illustrates coefficient sets may be useful; arrows indicate
possible successor sets of coefficients from step (3A) of
the pocket algorithm and asterisks indicate optimal sets.
Notice the optimal sets (E, F, and G) may be visited less
often than other sets (for example B).

4) Let set v be a nonoptimal set of coefficients that gives
correct results for randomly selected inputs with proba-
bility P, and let Q be an optimal set of coefficients giving
correct results with probability Pq (> P,), and suppose v
is visited M times for every time Q is visited, where M is
fixed and may be greater than 1. Then as the number of
iterations n grows, the probability that

{ the longest run of consecutive correct responses with
Q is greater than the longest run with v }

approaches 1.
Proof: The probability that the longest run for » is

< k for N trials is easily seen to be
(1-py° (1)

and similarly for .
It suffices to show that given 0 < ¢ < 1, there is an N
and k satisfying:

(a) Prob {longest run for v is <k for (MN) trials } >

(b) ;rob {longest run for @ is =k for N trials} > o.
Let N be fixed. From (1), condition (a) is satisfied for
log (1 — "Vo)
> g P
For condition (b) it is desired that
1-(1-Py)¥>o

(2)

or
k<log(1 - V(1 = 0)) 3)
log Pq

since log Pg < 0. Thus it must be shown that for large
enough N

log (1 - M%) log P, (4)
log (1 -V - 7)) log Pg’

Since 0 < P, < Py < 1 (because Q optimal )
log P, < log Py < 0
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Fig. 14. Learning coefficients visited in perceptron learning.

so
log P,
log PQ'

Thus letting C; = % and C, = (1 — o), it suffices to

show that
log (1 - iV/C_'l)
lim — ==
N> jog (1 - \/E;)

This follows by two applications of 1’Hépital’s rule.

5) Steps 1, 3, and 4 imply the theorem. If the problem
is separable, the pocket algorithm will produce an optimal
set of coefficients by the perceptron convergence theorem.
Otherwise, perceptron learning will go from coefficient
set to coefficient set, but eventually one of the repeatedly
visited optimal sets will have a longer run of correct re-
sponses than any other particular nonoptimal set with ar-
bitrarily high probability. Since there are only a finite
number of nonoptimal sets of coefficients, as the number
of iterations grows an optimal set will, with probability
1, have the longest run of correct responses. O
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