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Two Variations on Fisher’s Linear
Discriminant for Pattern Recognition

Tristrom Cooke

Abstract—Discriminants are often used in pattern recognition to separate clusters

of points in some multidimensional “feature” space. This paper provides two fast

and simple techniques for improving on the classification performance provided by

Fisher’s linear discriminant for two classes. Both of these methods are also

extended to nonlinear decision surfaces through the use of Mercer kernels.

Index Terms—Linear discriminant, classification.
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1 INTRODUCTION

THERE are many methods available for characterizing patterns. For
instance histograms, co-occurrence matrix measures, and fractal
dimensions have all been used as measures of texture. Hence, each
pattern can be represented as a point in some multidimensional
“feature” space. Automatic categorization of patterns based on
these features can be accomplished by using a discriminant to
partition this feature space. The partition is based on a set of points
having known class, which is referred to as the training set. Points
belonging to the same partition will then be categorized as being
produced by the same pattern. The performance of the discrimi-
nant can then be measured by using the same partitions to
categorize an independent test of points, referred to as the test set.
A higher percentage of correct classifications in the test set
indicates a better discriminant.

Linear discriminants may be used to discriminate any number

of classes of patterns, but are perhaps most commonly used when

there are only two classes. An example of such a problem is in

detection, where it is required that a target pattern, such as a

vehicle in a radar image, is detected from among the uninteresting

background patterns. Many detection problems are specified so

that the classifier must produce either a particular detection rate or

an upper bound for the rate at which false detections are produced.

Each of these specifications will be referred to as an “operating

point” for the classifier.
The Fisher discriminant [6] is the benchmark for the linear

discrimination between two classes in multidimensional space. It is

extremely quick to calculate since it is based only on the first and

second moments of each distribution. Also, it may be shown to

maximize a measure of the separation which is not specific to a

particular distribution type. This makes the Fisher discriminant

extremely robust. It is not optimal, however, since the discriminant

may not give the minimum classification error unless the two

classes are Gaussian with equal covariance.
In the quest for a linear discriminant which gives better

classification errors for more general distribution types, numerous

methods have been considered such as those outlined in Duda and

Hart [5]. Gradient descent techniques and SVMs [2] have met with

good success, often producing much better solutions than could be
obtained by the Fisher discriminant. Unfortunately both of these
techniques can be slow and it is often difficult to specify that the
classifier should be trained for a particular operating point.

This paper provides two fast and simple techniques for
improving on the linear discrimination provided by Fisher’s
discriminant and gives numerical examples showing favorable
results compared with more complex methods. Both techniques
rely on the robustness and speed of the Fisher discriminant,
while incorporating some of the ideas from other discriminant
methods. Due to their dependence only on dot products, these
methods are also shown to be easily extended to nonlinear
discrimination problems through the use of Mercer kernels.

2 FORMAL DESCRIPTION AND TERMINOLOGY

This paper considers two heuristics for solving the detection, or
binary classification problem. In this problem, it is assumed that
two classes of points are distributed in some multidimensional
feature space, with unknown probability densities fiðxÞ for
i ¼ 1 . . . 2. For each class i, a set of Ni points is sampled from the
appropriate class distribution. These points are refered to as the
training set. A binary classifier, or discriminant, is a procedure
which partitions the feature space into disjoint regions �1 and �2

based only on the training set information. A point belonging to �i

may then be labelled by the classifier as belonging to class i.
The detection problem is to find a discriminant which

minimizes some error criterion related to the above unknown
density functions fiðxÞ. Perhaps the most commonly used error
criterion is the classification error, defined by

Classification Error ¼ 1� 1

2

X2
i¼1

Z
�i

fiðxÞdx:

Another common error minimization principle is to minimize the
classification error of one of the classes, while fixing that of the
other class. For instance, minimizing

R
�1

f2ðxÞdx subject toR
�2

f1ðxÞdx ¼ � for some constant �. Constraining a class error
rate in this fashion is refered to as setting the operating point of the
classifier.

In many applications, it is desirable to know the performance of
the classifier at a number of different operating points. The usual
method for showing this is a Receiver Operating Characteristic
(ROC) curve. This is a plot of the probability of correct
classification of one class (

R
�2

f2ðxÞdx) against the probability of
incorrect classification of the other (

R
�2

f1ðxÞdx). Since the density
functions fiðxÞ are unknown, neither the classification error nor
points on the ROC curve can be known precisely. Instead, they are
usually estimated from a set of points sampled from the two
classes but independent of the training set. This set is called the test
set and when it is sufficiently large, points on the ROC curve may
be estimated to arbitrary precision.

The following section describes two classifiers which partition
the feature space using a hyperplane. The performance of these
discriminants are tested in Section 5.

3 THE TWO LINEAR DISCRIMINANTS

In this section, two methods are presented for partitioning a
multidimensional space based on training samples. It is claimed
that, for reasonably dense training data (defined here to mean that
the number of training samples of each class is large compared
with the number of dimensions), the expected classification error

268 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 2, FEBRUARY 2002

. The author is with the Center for Sensor Signal and Information
Processing, SPRI Building, 1 Warrendi Rd., Mawson Lakes, South
Australia 5096. E-mail: tcooke@cssip.edu.au.

Manuscript received 23 Feb. 2000; revised 04 Feb. 2001; accepted 16 July
2001.
Recommended for acceptance by U. Sethi.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 111547.

0162-8828/02/$17.00 � 2002 IEEE



of an independent test set using these partitions will often be
significantly lower than when using the standard Fisher discrimi-
nant. In fact, the numerical results of Section 5 indicate that the
second method gives similar performance to a support vector
machine with a linear kernel.

It should be stressed that the following methods are heuristic.

Although, both are based strongly on intuitive arguments, it has

not been possible for the author to derive any analytical results

concerning the performance of the methods. Since the numerical

simulations described in Section 5 were so successful, the details of

the methods are presented here in the hope that they will inspire

further research.

3.1 1D Parameter Search

The only way to guarantee an optimal solution to the linear

discriminant problem would be a multidimensional search

through all possible normals for the partitioning hyperplane. This

is usually infeasible for real problems which contain large numbers

of variables. If this search could be reduced to a lower-dimensional

space of directions in which it was more likely to find the required

solution, then a faster but no longer necessarily optimal method

could be obtained.

Anderson and Bahadur [1] showed that the optimal normal

to the decision hyperplane separating two multidimensional

Gaussians will be given by ðC1 þ �C2Þ�1ð��2 � ��1Þ. Here, �� and

C are the mean and covariance, the indices correspond to the

class and � is a real constant, which may range from �1 to

þ1 depending on the desired operating point. It was further

shown in Cooke and Peake [4] that this direction is the best

that can be possibly chosen, regardless of the distribution type,

when only the first and second moments of each distribution

are known. Varying � produces a one dimensional set of

directions which can be searched for the optimal solution.

When � ¼ 1 in the above formula for the normal, this

discriminant corresponds to the Fisher discriminant, so this will

be the lower limit on the training performance. For the case when

both distributions are only functions of their Mahalanobis distance

(normal or student-t distributions for instance), this method should

produce an optimal result.

3.2 Recursive Fisher

The method known as a Support Vector Machine (SVM) [2] for

discriminating two classes, minimizes a particular error functional

which is only slightly related to the training error. This functional

is based on the minimum distance between the decision surface

and each class, and the squared distance error of a number of

poorly or incorrectly classified points which are termed “support

vectors.” The final solution which minimizes this error functional

is dependent only on these support vectors, which are either close

to the final decision surface or are misclassified by it.

The SVM technique generally has the advantage of producing

much better classification errors than the Fisher discriminant. It

also has disadvantages however. First, it is slow compared with

Fisher’s discriminant, especially when classifying large numbers of

points. Second, the standard SVM formulation is dependent on a

regularization parameter, which cannot be set a priori. Setting this

parameter correctly often requires an SVM to be run for several

estimates of the parameter and cross-validated with an indepen-

dent subset of the training set (although implementations do exist

which do not require a cross-validation set, e.g. [3]). Finally, it is

difficult to specify that the resulting classifier should be trained for

a particular operating point.

To capitalize on an advantage of the SVM, while avoiding most

of the disadvantages, a recursive Fisher algorithm was developed

based on the concept of using support vectors. The procedure

consists of the following four steps:

1. Initialization. Set the percentage of support vectors
S ¼ S1. Then, calculate the initial hyperplane decision
surface n:x ¼ c. The normal to the hyperplane n may be
calculated by using the Fisher discriminant, while the
constant c should be chosen in an attempt to satisfy the
required optimality condition (for instance, to minimize
the classification error, c might be chosen to minimize the
training error).

2. Choosing support vectors. Generate two new distributions
by keeping the closest S percent of points from each class
to the decision surface n:x ¼ c.

3. Fisher discriminant. Calculate the new decision surface by
finding the Fisher discriminant of these two new distribu-
tions to determine n and again choose c to satisfy the
optimality condition.

4. Loop termination condition. Decrease the percentage of
support vectors S by some amount �S. If S is below some
threshold T , then end the loop, otherwise go to step 2.

An intuitive explanation for the above method can be seen by a

comparison with how a human might accomplish the same task.

First, one might use the overall shape of the distribution to arrive

at a rough estimate of the discriminant with the best training error.

After this, one might make small adjustments to the decision

surface until the best result is obtained. Since small adjustments

will not affect the way in which points that are far from the

decision surface are classified, then these have essentially become

redundant. Making smaller and smaller adjustments thus corre-

sponds to shrinking the number of support vectors in the above

algorithm. Eventually, the algorithm might be expected to

converge to a local minimum in the training error. It should be

noted that this explanation is not specifically dependent on the

discriminant being used and perhaps the method might be suitable

for other classifiers. This has not been investigated however.

For unimodal distributions, the best result seems to be usually

obtained for the lowest percentage of support vectors. This is true

even when both classes are Gaussian with equal covariance. For

this case the original Fisher estimate is optimal so removing the

first percentage of support vectors actually reduces the classifier

performance. As further support vectors are removed however, the

resulting discriminant seems to converge towards the original

optimal estimate.

As would be expected from the intuitive explanation, for

multimodal classes decreasing the percentage of support vectors

can occasionally significantly degrade discrimination performance.

This is likely due to the local minimum training error being very

far from the global minimum. For this reason, the training error

should be measured each time through the loop and the

intermediate (or the final) decision surface which gives the best

training error should be used. In this way, since the initial

discriminant is the Fisher discriminant, this technique can only

improve the training error. When the training set is reasonably

dense, it is claimed that this should also correspond to a reduced

test error.

The technique described above has three arbitrary parameters,

S1, �S, and T . Obviously, for best results, �S and T should be as

low as possible, but this results in increased computation time. Some

testing has indicated that S1 ¼ 90% and �S ¼ T ¼ 10% provides a

very good compromise and these are the parameters used later in
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the numerical simulations. This setting means that the new method

need only 10 evaluations of Fisher’s discriminant, which still makes

it considerably faster than most other methods.

4 EXTENSION TO NONLINEAR DISCRIMINATION

The standard technique for allowing SVMs (which are principally
linear discriminants) to solve nonlinear discrimination problems
involves the use of Mercer kernels. Mika et al. [8] shows that the
same procedure can be applied to the Fisher discriminant, yielding
a nonlinear discriminant having an accuracy comparable to that of
SVMs. They refer to this new discriminant as the Kernel Fisher
Discriminant (KFD).

The basic idea behind the kernel method is that a nonlinear

decision surface can be exactly the same as a linear decision surface

in a higher-dimensional space. For instance, a quadratic discrimi-

nant in coordinates ðx1; x2Þ can be obtained by constructing a linear

discriminant in the five-dimensional space having coordinates

ðx1; x2; x21; x1x2; x22Þ. For higher order discriminants however, the

number of features required quickly becomes unmanageable.

Suppose that x is a point in the lower-dimensional space and that

�ðxÞ is a mapping of this point into a higher-dimensional space.

Then, by using Mercer kernels, which are a set of functions kðx;yÞ ¼
�ðxÞ:�ðyÞ which express the dot product of the higher-dimensional

space in terms of the lower-dimensional coordinates, it is often not

necessary to perform the mapping � directly. For instance, the

polynomial kernel kðx;yÞ ¼ ð1þ x:yÞn would correspond to a

mapping of the data into the space of all monomials with degree

less than or equal to n. Another commonly used Mercer kernel is the

Gaussian radial basis function kðx;yÞ ¼ expð�jx� yj2=cÞ for some

positive constant c. More information concerning Mercer kernels

can be obtained in Vapnik [10].
The two linear discriminants presented in Section 3 have a form

similar to the Fisher discriminant. Hence, similar analysis to that in

Mika et al. [8] may be used to extend these to produce nonlinear

discriminants. They lose, however, many of the properties that

made them attractive as linear discriminants. First, the computa-

tional requirements are increased. Mika et al. [9], reports that, for a

training set of size N , a greedy approximation method may be

used to implement a kernel Fisher discriminant with computa-

tional complexity OðN3=2Þ for large N . Since the new algorithms

require the added calculation of the training error, the complexity

of these methods should be roughly OðN2Þ which is similar to that

obtained for SVMs [7].

Second, new kernel parameters may be required to be set to

prevent overfitting. These need to be set using cross-validation in

the same way that the regularization parameter for SVMs is set.

Nonlinear SVMs require both the kernel parameters and the

regularization parameter to be set, so is still slightly worse in this

respect. Finally, although the original training data may be dense,

using a Mercer kernel is equivalent to increasing the dimension-

ality of the discrimination problem. The training data may no
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longer be dense in this higher space, so minimizing the training

error will be less likely to reduce the corresponding test error.

Hence, for extremely high dimensionality kernels like the radial

basis function, the two new methods may not yield a good

performance and the SVM formulation may be more appropriate.

The numerical examples in Section 5 show that the new methods

may still be useful for other kernels such as the quadratic kernel

kðx;yÞ ¼ ð1þ x:yÞ2.
Following the analysis in Mika et al. [8], since the normal to

the decision surface between two distributions should belong to

the vector space spanned by the points in the distributions, we

can write the normal vector of the linear discriminant in the

higher-dimensional space as

n ¼
XN
i¼1

�i�ðxiÞ; ð1Þ

where N ¼ N1 þN2 is the total number of points in both classes

and xi is the ith point from the set of all points. Now, if the two

classes in the high-dimensional space have means ��1; ��2 and

covariances C1 and C2, then the Fisher discriminant maximizes the

expression for the separability given by

S ¼ ðnT ð��2 � ��1ÞÞ
2

nTC1nþ nTC2n
:

In order to evaluate S without the need to evaluate the mapping

�, (1) is applied to the expression containing the mean, yielding

nT�1 ¼
1

N1
nT
XN1

j¼1

�ðx1
j Þ

¼ 1

N1

XN
i¼1

�i

XN1

j¼1

�ðxiÞT�ðx1
j Þ

¼ 1

N1

XN
i¼1

�i

XN1

j¼1

kðxi;x
1
j Þ

¼ 1

N1
��Tk1;

where x1
j is the jth point of the first class. In a similar way, the

expression containing the covariance may be written after some

manipulation as

nTC1n ¼ 1

N1

XN1

i¼1

XN
j¼1

�jkðx1
i ;xjÞ

 !2

�ðnT��1Þ2

¼ 1

N1
��TK1K1

T��� 1

N2
1

��Tk1k
T
1 ��:

The above expressions imply that the separability criterion to be

maximized for the Fisher discriminant can be written as S ¼
ð�TA�Þ=ð�TB�Þ for some N 	N matrices A and B. The

separability can be maximized by choosing � to be the eigenvector

of AB�1 having the highest eigenvalue. Once � is known, the

normal to the decision hyperplane in the higher-dimensional space

can be calculated from (1) and a ROC curve can be drawn by

examining the distance of each of the distributions from the

hyperplane passing through the origin. For a point �ðxÞ, this

distance can be calculated using

n�ðxÞ ¼
XN
i¼1

�ikðx;xiÞ:

The two new linear discriminants described in this paper can be

implemented in a similar fashion. There is a slight difference

however for the 1D parameter search, since it requires the

evaluation of ðC1 þ �C2Þ�1ð��2 � ��1Þ for the calculation of the

search directions. This is the equivalent of maximizing a separ-

ability of Sð�Þ ¼ ðnT ð��2 � ��1ÞÞ
2=ðnTC1nþ �nTC2nÞ, or finding the

eigenvector of ABð�Þ�1 having the highest eigenvalue, for an

easily computable matrix Bð�Þ.
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5 NUMERICAL RESULTS

To show the possible improvement in performance of the two new

linear discriminants compared with the Fisher discriminant, four

numerical examples were examined. The first two examples

considered the linear discriminants and their nonlinear extensions

applied to simulated data sets. The discriminants were trained for

various operating points and the results from each separate

discriminant were displayed on ROC curves. For completeness,

the classifiers were also compared against a support vector

machine (SVM) and, in the second example, a table was produced

to show the effects of training data size on the classifier

performance. The third example considers the performance of

linear and nonlinear discriminants on some benchmark data sets.

Finally, real data from a target detection problem in Synthetic

Aperture Radar (SAR) imagery was used to compare the

discrimination results of the two new methods against that of the

standard Fisher discriminant.
The first example considered the two 2D Gaussian distributed

classes, as shown in Fig. 1a. The means and covariances of the

classes were given by

��1 ¼
0

0

� �
;C1 ¼

1:25 1

1 1:25

� �
;

��2 ¼
2

0

� �
;C2 ¼

5 �4

�4 5

� �
:

A training set of 4; 000 points (2; 000 from each class) and a test

set of size 100; 000 were then prepared and used to create the

ROC curves in Fig. 1b. In this example, both of the two new

methods yielded the best possible solution for any linear

discriminant. For the 1D parameter search, this is not surprising

since the method was based on the optimal solution for two

normally distributed classes [1]. The recursive Fisher method

which was not based on any such assumptions gave equally good

results. Both techniques give much stronger results than the

Fisher discriminant.
The points in Fig. 1b corresponding to the SVM were obtained

with SVMlight [7] for the linear kernel kðx;yÞ ¼ x:y. Also, half of

the training set was used for cross-validation. In this example, the

new methods gave a better performance than the SVM. This

indicates that, for dense data sets, minimizing the training error

may give a better test error than the SVM procedure which
minimizes a measure of the empirical risk.

The second example compares the nonlinear variants of the

new linear discriminants. The kernel used was kðx;yÞ ¼ ð1þ x:yÞ2,

which results in a quadratic discriminant. First, two independent

1D negative exponential distributions were generated for each

class and then translated and scaled to give the same class means

and covariances as for the first example. Some points from these

two-dimensional classes are shown in Fig. 2a.

Fig. 2b shows the ROC curves obtained by using the same

training, test, and cross-validation set sizes as in the first

example. Again, the 1D parameter search and the recurrent

Fisher still significantly outperform the standard Fisher. The

SVM discriminant however now appears to do better than the

1D search, although it still lags a little behind the performance

of the recurrent Fisher.

Table 1 shows the effect of training class size on the

performance of the discriminants in the second example. Even

for relatively small sample sizes, the two new methods show

significant improvement over the Fisher discriminant. In fact for

very small sample sizes, all of the methods seem to perform better

than the SVM. This may be somewhat misleading though, since

half of the SVM training set was used as a cross-validation set,

while the other methods did not require cross-validation. Even

taking this into account however, the recursive Fisher discriminant

appears to give similar performance for all but the lowest training

set size.
To further examine the behavior of the recursive Fisher

discriminant for the second example, Fig. 3 shows the average
training error (solid lines) and test error (dashed lines) as a
function of the iteration number. For this plot, the training error of
the second class was fixed at 20 percent. As expected, more
overfitting occured for smaller numbers of points, which resulted
in smaller training errors but higher test errors. Increasing the
number of points gave greater consistency between the training
and test errors.

The third example considers a handful of the benchmark
databases available at http://ida.first.gmd.de/~raetsch/data/
benchmarks.htm. The data is considered with 100 different
training and test set splits. The results of applying the new
discriminants, which are linear unless specified, are presented in
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Table 2. The performance is measured as the mean classification

error in percent, with the error term corresponding to the standard

deviation over the splits.

From the table, it can be seen that both of the new algorithms

generally perform better than the standard Fisher discriminant.

While the 1D search gave consistent improvements on the Fisher

discriminant, the recursive Fisher seemed to perform worse on

the two sparsest data sets (Diabetes and Breast Cancer). Only the

second of these was statistically significant however and it is

worth noting that the SVM also performed worse than

Fisher’s discriminant on these same data sets. In the remaining

data, the recursive Fisher discriminant was competitive with the

best of the other classifiers considered.

The final example uses the 1D parameter search, recursive

Fisher, and standard Fisher discriminants to classify 1m resolution

SAR imagery. Six features were calculated for each image from a

data set of 993 target and 157,816 background images. This set was

then bisected into separate training and test sets and the three

linear discriminants were applied to various combinations of the

features. The results from each discriminant are shown in Table 3

as areas under the ROC curve and show that both of the new

methods provide significant improvement over the standard

Fisher method.

6 CONCLUSIONS

Two fast linear discriminants have been described. Both of these

methods will allow better training performance for pattern

detection problems than the standard Fisher discriminant.
The first of the two methods, the 1D parameter search, should

provide optimal results for symmetrical feature distributions, but

performs somewhat less well when this assumption is not

satisfied. For dense training sets, the second method (recursive

Fisher discriminant) has, in the examples tested, consistently

provided a comparable classification performance to linear

support vector machines, but for a much lower computational

burden. At the expense of an increase in computational complexity

and a possible decrease in generalization performance, both of

these methods have been extended using Mercer kernels to

provide nonlinear discrimination.
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