
CSC2515 – Machine Learning Sam Roweis

Lecture 9:

Continuous Latent Variable Models

November 7, 2006

Continuous Latent Variable Models 1

•Often there are some unknown underlying causes of the data.

•Mixture models use a discrete class variable: clustering.

• Sometimes, it is more appropriate to think in terms of continuous
factors which control the data we observe. Geometrically, this is
equivalent to thinking of a data manifold or subspace.

λ1

λ2µ

y1

y2

y3

• To generate data, first generate a point within the manifold then
add noise. Coordinates of point are components of latent variable.

Dimensionality Reduction vs. Clustering 2

• Training such “factor models” is called dimensionality reduction.
(examples: Factor Analysis, Principal/Independent Components)
You can think of this as (non)linear regression with missing inputs.

• Continuous causes can sometimes be much more efficient at
representing information than discrete causes.

• For example, if there are two factors, with about 256 settings each
we can describe the latent causes with two 8-bit numbers.

• If we tried to cluster we would need 216 ≈ 105 clusters.

Factor Analysis 3

•When we assume that the
subspace is linear and that the
underlying latent variable has a
Gaussian distribution we get a
model known as factor analysis:
— data y (p-dim);
— latent variable z (k-dim)

λ1

λ2µ

y1

y2

y3

p(z) = N (z|0, I)

p(y|z, θ) = N (y|µ + Λz, Ψ)

where µ is the mean vector, Λ is the p by k factor loading matrix, and
Ψ is the sensor noise covariance (usually diagonal).

• Important: since the product of Gaussians is still Gaussian, the joint
distribution p(z,y), the other marginal p(y) and the conditional
p(z|y) are also Gaussian.



Marginal Data Distribution 4

• Just as with discrete latent variables, we can compute the marginal
density p(y|θ) by summing out z. But now the sum is an integral:

p(y|θ) =

∫

z
p(z)p(y|z, θ)dz = N (y|µ , ΛΛ⊤+Ψ)

which can be done by completing the square in the exponent.

• However, since the marginal is Gaussian, we can also just compute
its mean and covariance. (Assume noise uncorrelated with data.)

E[y] = E[µ + Λz + noise] = µ + ΛE[z] + E[noise]

= µ + Λ · 0 + 0 = µ

Cov[y] = E[(y − µ)(y − µ)⊤]

= E[(µ + Λz + noise− µ)(µ + Λz + noise− µ)⊤]

= E[(Λz + n)(Λz + n)⊤] = ΛE(zz⊤)Λ⊤ + E(nn⊤)

= ΛΛ⊤ + Ψ

Constrained Covariance 5

•Marginal density for factor analysis (y is p-dim, z is k-dim):

p(y|θ) = N (y|µ , ΛΛ⊤+Ψ)

• So the effective covariance is the low-rank outer product of two
long skinny matrices plus a diagonal matrix:

ΛT

Λ ΨCov[y]

• In other words, factor analysis is just a constrained Gaussian model.
(If Ψ were not diagonal then we could model any Gaussian and it
would be pointless.)

• It is easy to find µ: just take the mean of the data.
(From now on we assume we do this and then re-centre y, so
whenever you see y or yn really we mean y − µ and yn − µ.)

Maximum Likelihood Factor Analysis 6

•We will do maximum likelihood learning using
(surprise, surprise) the EM algorithm.
E-step: qt+1 = p(zn|yn, θt)
M-step: θt+1 = argmaxθ

∑

n

∫

z qt+1(zn|yn) log p(yn, zn|θ)dzn

• For this we need the conditional distribution p(z|y) (inference)
and the expected log likelihood of the complete data. Results:

E− step : qt+1 = p(z|y, θt) = N (zn|mn,V)

V = (I + Λ⊤Ψ−1Λ)−1

mn = VΛ⊤Ψ−1yn

M− step : Λt+1 =

(

∑

n

ynmn⊤

)(

NV +
∑

n

mnmn⊤

)−1

Ψt+1 =
1

N
diag

[

∑

n

ynyn⊤ − Λt+1
∑

n

mnyn⊤

]

Complete Data Likelihood 7

•Write down the joint distribution of z and y:

p(

[

z

y

]

) = N (

[

z

y

]

|

[

0
µ

]

,

[

I Λ⊤

Λ ΛΛ⊤ + Ψ

]

)

where the corner elements Λ⊤, Λ come from Cov[z,y]:

Cov[z,y] = E[(z− 0)(y − µ)⊤] = E[z(µ + Λz + n− µ)⊤]

= E[z(Λz + n)⊤] = Λ⊤

• This gives the complete likelihood (assuming zero mean µ = 0):

ℓc(Λ, Ψ) = −
N

2
log |Ψ| −

1

2

∑

n

z⊤z−
1

2

∑

n

(yn − Λzn)⊤Ψ−1(yn − Λzn)

= −
N

2
log |Ψ| −

N

2
trace[HΨ−1]

H =
1

N

∑

n

(yn − Λzn)(yn − Λzn)⊤



E-Step: Inference in Factor Analysis 8

• Apply the Gaussian conditioning formulas to the joint distribution
we derived above. This gives the inference formulas:

p(z|y) = N (z|m,V)

V = I − Λ⊤(ΛΛ⊤ + Ψ)−1Λ

m = Λ⊤(ΛΛ⊤ + Ψ)−1(y − µ)

•We could use these expressions in the E-step,
but they are very expensive to compute be-
cause we have to invert an matrix whose edge
size is the dimension of the data.

• The matrix in question is the sum of a low-
rank matrix plus a diagonal matrix, so maybe
we don’t have to do as much work as in the
general case?

µ

y1

y2

y3

y

M-Step: Maximize Expected Complete Log Lik. 9

•We use the expression we derived for the complete log likelihood
ℓc(z,y) and the inference formulas for p(z|y) to compute the
expected complete log likelihood, ℓ(y).

• For the M-step, we take derivatives of this expected likelihood with
respect to the parameters and either optimize exactly (if we can) or
follow the gradient.

• You need these tricks to compute the M-step derivatives:

∂

∂A
log |A| = A−⊤

∂

∂A
trace[B⊤A] = B

∂

∂A
trace[BA⊤CA] = 2CAB

Probabilistic Principal Component Analysis 10

• In Factor Analysis, we can write the marginal density explicitly:

p(y|θ) =

∫

z
p(z)p(y|z, θ)dz = N (y|µ , ΛΛ⊤+Ψ)

• Noise Ψ mut be restricted for model to be interesting. (Why?)

• In Factor Analysis the restriction is that Ψ is diagonal (axis-aligned).

•What if we further restrict Ψ = σ2I (ie spherical)?

•We get the Probabilistic Principal Component Analysis (PPCA)
model:

p(z) = N (z|0, I)

p(y|z, θ) = N (y|µ + Λz, σ2I)

where µ is the mean vector,
columns of Λ are the principal components (usually orthogonal),
and σ2 is the global sensor noise.

Gaussians are Footballs in High-D 11

• Recall the intuition that Gaussians are hyperellipsoids.

•Mean == centre of football
Eigenvectors of covariance matrix == axes of football
Eigenvalues == lengths of axes

• In FA our football is an axis aligned cigar.
In PCA our football is a sphere of radius σ2.

PCA

εΙ

FA

Ψ



Likelihood Functions 12

• For both FA and PCA, the data model is Gaussian.
Thus, the likelihood function is simple (including the mean):

ℓ(θ;D) = −
N

2
log |ΛΛ⊤ + Ψ| −

1

2

∑

n

(yn − µ)⊤(ΛΛ⊤ + Ψ)−1(yn − µ)

= −
N

2
log |V| −

1

2
trace

[

V−1
∑

n

(yn − µ)(yn − µ)⊤

]

= −
N

2
log |V| −

1

2
trace

[

V−1S
]

V is model covariance; S is sample data covariance.

• In other words, we are trying to make the constrained model
covariance as close as possible to the observed covariance, where
“close” means the trace of the ratio.

• Thus, the sufficient statistics are the same as for the Gaussian:
mean (1/N)

∑

n yn and covariance (1/N)
∑

n(yn − µ)(yn − µ)⊤.

Fitting the PCA model 13

• The standard EM algorithm applies to PCA also:
E-step: qt+1 = p(zn|yn, θt)
M-step: θt+1 = argmaxθ

∑

n

∫

z qt+1(zn|yn) log p(yn, zn|θ)dzn

• For this we need the conditional distribution (inference)
and the expected log of the complete data. Results:

E− step : qt+1 = p(z|y, θt) = N (zn|mn,Vn)

Vn = (I + σ−2Λ⊤Λ)−1

mn = σ−2VnΛ⊤y

M− step : Λt+1 =

(

∑

n

ynmn⊤

)(

NV +
∑

n

mnmn⊤

)−1

σ2t+1
=

1

ND

∑

i

[

∑

n

ynyn⊤ − Λt+1
∑

n

mnyn⊤

]

ii

Direct Fitting 14

• For FA the parameters are coupled in a way that makes it
impossible to solve for the ML params directly.
We must use EM or other nonlinear optimization techniques.

• But for PCA, the ML params can be solved for directly:
The kth column of Λ is the kth largest eigenvalue of the sample
covariance S times the associated eigenvector.

• The global sensor noise σ2 is the sum of all the eigenvalues smaller
than the kth one.

• This technique is good for initializing FA also.

•We can’t make the sensor noise unconstrained, or else we would
always get a perfect fit!

Inference is Linear 15

• Recall the inference formulas for FA:

p(z|y) = N (z|m,V)

V = I− Λ⊤(ΛΛ⊤ + Ψ)−1Λ

= (I + Λ⊤Ψ−1Λ)−1

m = Λ⊤(ΛΛ⊤ + Ψ)−1(y − µ)

= VΛ⊤Ψ−1(y − µ)

• Note: inference of the posterior mean is just a linear operation!

m = β(y − µ)

where β can be computed beforehand given the model parameters.

• Also: posterior covariance does not depend on observed data!

cov[z|y] = V = (I + Λ⊤Ψ−1Λ)−1



PCA – Zero Noise Limit of PPCA 16

• The traditional PCA model is actually a limit as σ2→ 0.
The model we saw is actually called “probabilistic PCA”.

• However, the ML parameters Λ∗ are the same.
The only difference is the global sensor noise σ2.

• In the zero noise limit inference is easier: orthogonal projection.

lim
σ2→0

Λ⊤(ΛΛ⊤ + σ2I)−1 = (Λ⊤Λ)−1Λ⊤

µ

y1

y2

y3

y

Scale Invariance in Factor Analysis 17

• In FA the scale of the data is unimportant: we can multiply yi by
αi without changing anything:

µi← αiµi

Λij ← αiΛij ∀j

Ψi← α2
iΨi

• However, the rotation of the data is important.

• FA looks for directions of large correlation in the data, so it is not
fooled by large variance noise.

PCA

FA

Rotational Invariance in PCA 18

• In PCA the rotation of the data is unimportant: we can multiply
the data y by and rotation Q without changing anything:

µ← Qµ

Λ← QΛ

Ψ← unchanged

• However, the scale of the data is important.

• PCA looks for directions of large variance, so it will chase big noise
directions.

PCA

FA

Model Invariance and Identifiability 19

• There is degeneracy in the FA model.

• Since Λ only appears as outer product ΛΛ⊤, the model is invariant
to rotation and axis flips of the latent space.

•We can replace Λ with ΛQ for any unitary matrix Q and the model
remains the same: (ΛQ)(ΛQ)⊤ = Λ(QQ⊤)Λ⊤ = ΛΛ⊤.

• This means that there is no “one best” setting of the parameters.
An infinite number of parameters all give the ML score!

• Such models are called un-identifiable since two people both fitting
ML params to the identical data will not be guaranteed to identify
the same parameters.



Latent Covariance in Factor Analysis and PCA 20

•What if we allow the latent variable z to have a covariance matrix
of its own: p(z) = N (z|0,P)?

•We can still compute the marginal probability:

p(y|θ) =

∫

z
p(z)p(y|z, θ)dz = N (y|µ , ΛPΛ⊤+Ψ)

•We can always absorb P into the loading matrix Λ by diagonalizing
it: P = EDE⊤ and setting Λ = ΛED1/2.

• Thus, there is another degeneracy in FA, between P and Λ:
we can set P to be the identity, to be diagonal, whatever we want.

• Traditionally we break this degeneracy by either:

– set the covariance P of the latent variable to be I (FA) or

– force the columns of Λ to be orthonormal (PCA)

Mixtures of Dimensionality Reducers 21

•What’s the next logical step?

• Try a model that has two kinds latent variables: one discrete
cluster, and one vector of continuous causes.

• Such models simultaneously do clustering, and within each cluster,
dimensionality reduction. Great idea!

Mixtures of Factor Analyzers 22

• The simplest version of this is the mixture of factor analyzers.

p(z) = N (z|0, I) p(k) = αk

p(y|z, k, θ) = N (y|µk + Λkz, Ψ)

p(y|θ) =
∑

k

∫

z
p(k)p(z)p(y|z, k, θ)dz

=
∑

k

αkN (y|µk , ΛkΛ⊤k +Ψ)

•Which is a constrained mixture of Gaussians.

• This is like a mixture of linear experts, using a logistic regression
gate, eith missing inputs.

• Fitting procedure? EM, of course!

• see ftp.cs.toronto.edu/pub/zoubin/tr-96-1.ps.gz

Independent Components Analysis (ICA) 23

• ICA is another continuous latent variable model, like FA, but it has
a non-Gaussian and factorized prior on the latent variables.

• This is good in situations where most of the factors are very small
most of the time and they do not interact with each other.
Example: mixtures of speech signals.

• The learning problem is the same: find the weights from the factors
to the outputs and infer the unknown factor values. In the case of
ICA the factors are sometimes called “sources”, and the learning is
sometimes called “unmixing”.



Geometric Intuition 24

• Since the latent variables are assumed to be independent, we are
trying to find a linear transformation of the data that recovers these
independent causes.

•Often we use heavy tailed source priors, e.g. p(zi) ∝ 1/ cosh(zi).

• Geometric intuition: finding spikes in histograms.

−0.5 0 0.5
−0.5

0

0.5

x
1

x 2

Learned basis vectors

ICA Model 25

• The simplest form of ICA has as many outputs as sources (square)
and no sensor noise on the outputs:

p(z) =
∏

k

p(zk)

y = Vz

• Learning in this case can be done with gradient descent (plus some
“covariant” tricks to make the updates faster and more stable).

• If you keep the square V and use isotropic Gaussian noise on the
outputs there is a simple EM algorithm, derived by Max Welling
and Markus Weber.

•Much more complex cases have been studied also: nonsquare,
convolutional, time delays in mixing, etc.

• But for that, we need to know about time-series...

Matrix Inversion Lemma 26

• There is a good trick for inverting matrices when they can be
decomposed into the sum of an easily inverted matrix (D) and a
low rank outer product. It is called the matrix inversion lemma.

(D + AB−1A⊤)−1 = D−1 −D−1A(B + A⊤D−1A)−1A⊤D−1

(Also known as the Sherman-Morrison Woodbury Formula.)

•We can apply this trick to the inference formulas for FA and get:

p(z|y) = N (z|m,V)

V = (I + Λ⊤Ψ−1Λ)−1

m = VΛ⊤Ψ−1y

These expressions are much more computationally efficient because
we only have to invert a matrix of size of z not size of y.

Reminder: Means, Variances and Covariances 27

• Remember the definition of the mean and covariance of a vector
random variable:

E[x] =

∫

x
xp(x)dx = m

Cov[x] = E[(x−m)(x−m)⊤] =

∫

x
(x−m)(x−m)⊤p(x)dx = V

which is the expected value of the outer product of the variable
with itself, after subtracting the mean. Symmetric.

• Also, the (cross)covariance between two variables:

Cov[x,y] = E[(x−mx)(y −my)⊤] = C

=

∫

xy
(x−mx)(y −my)⊤p(x,y)dxdy = C

which is the expected value of the outer product of one variable
with another, after subtracting their means.
Note: C is not symmetric.



Reminder: Gaussian Conditioning 28

• Remember the formulas for marginalizing and conditioning
Gaussian probability distribution functions.

• Joint:

p(

[

x1
x2

]

) = N

([

x1
x2

]

|

[

µ1
µ2

]

,

[

Σ11 Σ12
Σ21 Σ22

])

•Marginals:
p(x1) = N (µ1, Σ11)

• Conditionals:

p(x1|x2) = N (x1|m1|2,V1|2)

m1|2 = µ1 + Σ12Σ
−1
22 (x2 − µ2)

V1|2 = Σ11 − Σ12Σ
−1
22 Σ21


