CSC2515 — Machine Learning Sam Roweis

LECTURE 7:

CLUSTERING AND TREE MODELS

October 24, 2006

THREE UNSUPERVISED MODELS 2

e The three canonical problems in unsupervised learning are
clustering, dimensionality reduction, and density modeling:

— Clustering: grouping similar training cases together and
identifying a “prototype” example to represent each group.

— Dimensionality reduction: learning to represent each training case
using a small number of continuous variables from which the
original data can be almost exactly reconstructed.

— Density modeling: learning a density function from a few
samples. This is like quantitative novelty detection: we want to
produce a large signal when data similar to training data appears
and a small signal when different data appears.

UNSUPERVISED LEARNING 1

e So far we have only discussed supervised learning in which there are
both inputs and desired outputs.
For regression, the output(s) were continuous values.
For classification, the output was a discrete (categorical) label.

e Another very important problem in machine learning is
unsupervised learning, in which there are no outputs, only inputs.

e What should we do here?

MissiNG OUTPUTS 3

e You can think of unsupervised learning as supervised learning in
which all the outputs are missing:

— Clustering == classification with missing labels.
— Dimensionality reduction == regression with missing targets.
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e Density estimation is actually very general and encompasses the
two problems above and a whole lot more.

e Let's start off by talking about clustering




CLUSTERING 4
o Clustering: grouping similar '2(:
training cases together and . %‘
identifying a “prototype” example $e°
to represent each group.

e Several approaches: partitional (find a fixed number of clusters), ...
heirarchical (agglomerative, divisive),
e All require a way to measure distance between two data points, e.g.

Euclidean distance ||x — y/||?,
Mahanalobis distance (x —y) V™ (x —y),

CosT FuNcTION FOR K-MEANS 6

e Q: What cost function is K-means minimizing?
A: Average squared distance from each datapoint to the nearest
cluster centre:

B({puh) = 5 3 min [ = i) VH" — )

e The K-means algorithm does coordinate descent in a function
F({u}, {cn}) which is an upper bound on this error:

Flfuh fenh) = 55 30 [0 = o) VI~ )|

This upper bound is valid for any setting of the c),.

After the assignment step for ¢, F'(u,c) = E(p).

The assignment step lowers this bound as much as possible with
respect to {c, } keeping p fixed, the update step minimizes it with
with respect to {1}, keeping c fixed.

ALGORITHM: K-MEANS 5

VECTOR AND NON-VECTOR (QUANTIZATION 7

o Select a number of clusters K (and possible a covariance V.
Start with initial cluster centres “(1)7 ,ug, e ,u(}(.

e Alternate between two steps.
Assign each datapoint to the cluster whose centre is closest:

I = argming (x — ,uz];)TVfl(xn - M@
Update cluster centres to the mean of all points assigned to them:
t+1 Zn[c?—l - n}VXn
S

e If a cluster becomes empty, use a heuristic to reposition its mean.
Break ties in distance using cluster of smallest size.
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e K-means clustering is also called vector quantization in the
engineering/signal processing literature, because the problem is like
quantization but for multivariate objects.

e The cluster centres are called codebook vectors.

e More correctly, K-means (or VQ) is an optimization problem, and
the algorithm above, which is (just) one potential solution to it is
called the Lloyd-Max algorithm.

e However, sometimes, we want to apply this algorithm to complex
data that cannot be expressed easily as a vector (eg gene sequence).

e As long as we have a distance measure between data items, we can
still perform the assignment step, but for the update step, we
cannot “average” so we restrict the centres to lie on one of the
original data items (could be expensive to find the best one).

e This is the K-mediods/K-medians problem.




IMPLEMENTATION TRICKS 8

e K-means (and other clustering methods) require tricks to work well.

e Initialization: set u% to be K randomly chosen points, or else to
the first K points from furthest-first clustering (see later).

e Picking number of clusters: use cross validation on the error
function evaluated on a validation set.

e Unused clusters: set to points with biggest errors.
e Ties in distance: add points to smaller clusters first.

e Robust errors: use squared error up to some maximum error then
constant error beyond that. (Affects both steps.)

e | ocal minima: use random restarts, split and merge clusters.

HIERARCHICAL CLUSTERING 10

o Hierarchical clustering algorithms break the dataset into a series of
nested clusters, starting with a single cluster at the top containing
all the data and ending with N clusters at the bottom, one for each
point. The results can be displayed as a dendrogram:
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MORE GENERAL OBJECTIVE FUNCTIONS 9

e If we change the distance function, the assignment step is still easy,
but updating the cluster centres might be hard.

e Some common distances, their names, and their cost functions:
K-means (average squared distance)

E({px}) = 4 2o ming [(x" — p1,) "V — )]
K-medians (average distance):

B({i}) = % X ming | /0" = ) VTG = )|
K-corners (average abs. error):

1 .
E({ug}) = 3 >, ming [ ] — ]
K-centres (biggest cluster radius):

E({p:}) = maxy ming, [(x" — 1) TV — )]
e Special cases solved, e.g. K-corners: Mi:i = n1edian6%:k[w;"}

AGGLOMERATIVE CLUSTERING 11

e Agglomerative algorithms for hierarchical clustering start with each
datapoint in its own cluster and then successively merge similar
clusters until a single cluster remains.

e Several methods for merging. Most based on computing cluster
distances d, from pairwise distances d,,,; between all pairs of
points and then merging the two clusters with smallest d,..:
Single linkage: d,.. = min, e /ep d
Complete linkage: d., = max
Average linkage: d .., = mean
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DivisivE CLUSTERING 12

e Divisive algorithms for hierarchical clustering start with all the data
in a single cluster and successively split clusters.

e Here's my favourite one: furthest-first traversal.

Pick any point, mark it, and set mu(l) equal to it.

for i=2:N
find the unmarked point furthest from {mu(1)...mu(i-1)}
[using dist(point,{set})=min(p’ in {set}) dist(point,p’)]
mark this point and set mu(i) equal to it

TREE MODELS AS GRAPHS 14

o If we identify each variable with a node in a graph, we can describe
this model by drawing a directed arrow from each node to its
children. NB: each node (except root) has exactly one parent but
may have more than one child.
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¢ L * ® - functions using probabilistic graphical models. (see CSC412/2506)

TREE MODELS 13 MAXIMUM LIKELIHOOD NODE PARAMETERS 15

e A tree model is a unsupervised learning model in which each
variable x; has exactly one other variable as its “parent” xr,,
except the “root” oot Which has no parents.

e The probability of a variable taking on a certain value depends only
on the value of its parent:

p(X) :p(xroot) H p(xi’Im)
1100t
e Trees are the next step up from assuming independence.
Instead of considering variables in isolation, consider them in pairs.

o WARNING: do not confuse these trees (probability model is a tree)

with decision trees (algorithm proceeds in a tree structured fashion).

e Trees are just a special case of fully observed density models.

o For discrete data x; with values v;, each node stores a conditional
probability table (CPT) over its values given its parent’s value.
The ML parameter estimates are just the empirical histograms of
each node's values given its parent:

N(z; = v, xx, = vj)
* 1 2y LTy J
P (i = vilz, = vj) =
U T N = 2 em = 0)

except for the root which uses marginal counts N (vypot)/N.

e For continuous data, the most common model is a two-dimensional
Gaussian at each node, jointly modeling the node and its parent.

e The ML parameters are just to set the mean of p;(z;, zr;) to be
the sample mean of [z;; x| and the covariance matrix to the
sample covariance.




OVERALL LIKELIHOOD FUNCTION 16

e Overall likelihood is sum of parent-conditional terms, one per node:
V; = set of joint configurations of z; and its parent .
(Vioot = set of values of root note)

Zlogp Z log pr(x +210gp ;" |z

1#r
= ZZ > i wm, = yllog pililvn,)
i yeV;
= Z > Ni(y)logpi(y)
i yeEV;

with p;(y;) = p(z;|rx,) and counts N;(y) = 3, [y = y].
e Trees are in the exponential family with y; as sufficient statistics.

OPTIMAL TREE STRUCTURE = MWST 18

e Let us rewrite the overall likelihood function:

(6;D) = > N(x)logp(x)

xEVa

= Z N(x) (logp(x,) + Z logp(xz-|xm))

i#r
e ML parameters, are equal to the observed frequency counts ¢(-):

é*
T > alx) (logq )+ Y logg(aias,) )

xEVy i

— Zq(x) (logq x) + Zl x” )
=) qlx) Zl o ”l Z g(x) > logg(w;)
X i#r i

o NB: second term does not depend on structure.

STRUCTURE LEARNING 17

e What about the tree structure (links)?
How do we know which nodes to make parents of which?

X
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e Bold idea: can we also learn the optimal structure?
In principle, we could search all combinatorial structures, for each
compute the ML parameters, and take the best one.

e But is there a better way? Yes. It turns out that structure learning
in tree models can be converted to a good old computer science
problem: maximum weight spanning tree.

EDGE WEIGHTS 19

e Each term in sum ¢ # r corresponds to an edge from ¢ to its parent.
=3 alx §)0 %“" e
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e So the overall likelihood is the sum of weights on edges that we use.
We need the maximum weight spanning tree to maximize likelihood.

e The edge weights W are defined by mutual information:

(Ilv xj)
}:q%w]bg(

= D))




KRUSKAL’S ALGORITHM (GREEDY SEARCH) 20

e To find the maximum weight spanning tree A on a graph with
nodes U and weighted edges F:
1. A «— empty
2. Sort edges E by nonincreasing weight: e1,e9,...,ef.
3.for k=1to K {A +=ey, unless doing so creates a cycle}

UNDIRECTED VS. DIRECTED TREES 22

e Any directed tree consistent with the undirected tree found by the
algorithm above will assign the same likelihood to any dataset.

e Amazingly, as far as likelihood goes, the root is arbitrary.
We can just pick one node and orient the edges away from it.
Or we can work with undirected models.

e For continuous nodes (e.g. Gaussian), the situation is similar,
except that computing the mutual information requires an integral.

e Mutual information is the Kullback-Leibler divergence
(cross-entropy) between a distribution and the product of its
marginals. Measures how far from independent the joint
distribution is.

MAaXiIMUM LIKELIHOOD TREES 21

We can now completely solve the tree learning problem:
1. Compute the marginal counts ¢(z;) for each node
and pairwise counts q(z;, xj) for all pairs of nodes.

2. Set the weights to the mutual informations:

Wi g) = qlwi, xj)log i 1)

3. Find the maximum weight spanning tree A=MWST (V).

4. Using the undirected tree A chosen by MWST, pick a root
arbitrarily and orient the edges away from the root.
Set the conditional functions to the observed frequencies:

Q(xiaxﬂz‘) q(xiawﬂ'i)

p($i|$m) N sz Q(xiv Iﬂi) q(ZE%’:)
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