
CSC2515 – Machine Learning Sam Roweis

Lecture 4:

Regression I

October 3, 2006

Reminder: Regression 1

•Multiple inputs x, mixed cts. and discrete.

• Continuous output(s) y. (Consider each separately.)

• Goal: predict output on future unseen inputs.

• Still conditional density estimation: p(y|x) (c.f. classification)

• For now, consider continuous inputs and a single output...
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Error Function is Crucial (eg Constant Model) 2

• Constant model says y = a, independent of x.
(What is the constant model in classification?)

•Q: What should we use for a?
The mean? The median? The mode (for quantized data)?

• A: Depends on your error function (noise model).

• For squared error, the mean is best:

e =

N
∑

n=1

(yn − a)2

de

da
= 2

∑

n

(yn − a)

a∗ =
1

N

∑

n

yn

Absolute Error 3

• For abs error, we get the median:

e =

N
∑

n=1

|yn − a|

de

da
=

∑

n

sign[a − yn]

= (#ynsmaller than a) − (#ynbigger than a)

a∗ = median[y1 . . . yN ]

(if there are an even number of datapoints or exact duplicates, any
value between the middle two is optimal)

•Moral: Even for constant model life is not so simple...



Linear Regression 4

• Linear model:

y =
∑

wixi + w0 = w⊤x + w0 = w⊤x̃

•

Geometry: a line or hyperplane.
The bias term w0 offsets the line
(hyperplane) from the origin.
Think of vertical springs
connecting yn to line w⊤x.
Goal: minimze energy.

x

y

y=Ax

• Usually augment x with constant and absorb bias into w.

•Q: What’s the best w?

• A: As you know, it depends on your cost function!

(The constant model corresponds to w0 = a,wi = 0.)

Ordinary Least Squares 5

• For squared error, the problem is linear least squares, or ordinary

least squares, and we can get a direct solution:

y = w⊤x

e =
∑

n

(yn − w⊤xn)2

w∗ = (XX⊤)−1Xy⊤

•X is matrix of inputs (one per column); y is output row vector.

• This is one of the most famous equations in all of linear algebra:
the discrete Weiner filter.

• It says: take the correlation between inputs and outputs, but don’t
be fooled by large input-input correlations.

• Predicted values are ŷn = yX⊤(XX⊤)−1xn.

Probabilistic Model for Least Squares 6

•What probabilistic model corresponds to squared error? Gaussian:

p(y|x,w) =
1√

2πσ2
e
− 1

2σ2(y−w⊤x)2

log p(y|x,w) = −1

2
(y − w⊤x)2 + const

log p(y|X,w) =
∑

n

log p(yn|xn,w) for iid data

• So minimzing squared error ≡ maximum Gaussian noise likelihood

•What if we have multiple outputs (y is a vector)?
Turns out we can just treat each one as a separate regression
problem, even if the output noise is correlated.
(However, if the output noises are correlated and the noise changes
from case to case, then the solutions become coupled.)

Error Bars on Predictions 7

• Can we estimate the noise level? Yes. An unbiased estimate is:

σ2 ≈ 1

N − d − 1

∑

n

(yn − w⊤x)2

•What about the variance of parameters? Yes, also:

var[w] = (XX⊤)−1σ2

• This allows us to put some crude error bars on our predictions:
p(ŷ|x) is Gaussian with

mean=w⊤x

variance= w⊤(XX⊤)−1w + σ2

• There is uncertainty in the prediction both from the output noise
and from our uncertainty about our estimated parameters.



Absolute Error Linear Regression 8

•What if we use absolute error with the linear model?
What’s the equivalent of the median estimator?

min
w

∑

n

|yn − w⊤xn|

•We need to solve a linear programming problem:

min
∑

n

tn

subject to − tn ≤ yn − w⊤xn ≤ tn

•What probabilistic model corresponds to absolute error? Laplacian:

p(y|x,w) = ae−a|y−w⊤x|

log p(y|x,w) = −a|y − w⊤x| + const

Regularization 9

•What? You thought the linear model was simple enough that we
don’t need to regularlize it? Everything needs regularization!

• Example 1: you have fewer training cases than input dimensions.
Now XX⊤ will not be invertible.

• Example 2: certain input dimensions are useless (on average) at
predicting the output. But because of noise or small samples, you
can always reduce the training error a tiny bit by putting huge
weights on these dimensions. At test time you get killed.

• Two common solutions:

– input subset selection

– parameter shrinkage

Subset Selection 10

• Use only a few xi as inputs, discard the rest.
Advantages: introduces inductive bias, produces small models.
Disadvantage: high variability because of binary choices.

• Forward stepwise selection: start with constant and iteratively add
the single xi which most decreases error.

• Backward stepwise selection: start with all inputs and iteratively
remove the single xi which least increases error.

• Leaps-and-Bounds: Furnival and Wilson (74) came up with a very
clever branch-and-bound trick for efficiently trying all possible

subsets. Works for up to ≈ 40 variables.

• Choose subset size with cross validation or F-statistic tests.

Shrinkage/Ridge Regression 11

• Idea: pull (“shrink”) estimated parameters towards some fixed
values that do not depend on the data. (“Stein’s paradox”.)

• Usually we shrink towards zero (but sometimes towards the mean of
some other set of weights).

• Shrinking to zero: penalize coefficients based on their size.

• For a penalty which is the sum of the squares of the weights, this is
known as “weight decay” or “ridge regression”:

y = w⊤x

e =
∑

n

(yn − w⊤x)2 + λ
∑

i

w2
i

w∗ = (XX⊤ + λI)−1Xy⊤

where I is the identity matrix.

•We used the same trick when we were training Gaussian
class-conditional classifiers.



Shrinkage Explained Graphically 12

Observed Value (after symmetric noise)

Estimate Improves

Shrink to this value
(arbitrary)(unobserved)

True Value"Shrinkage"
in 1D

Estimate Gets Worse

[This explanation was originally shown to me by to Geoff Hinton.]

Ridge Regression Practicalities 13

• Set λ with cross-validation. (There is a trick which lets you
compute the leave-one-out error very efficiently without refitting N

times. See “generalized cross-validation”.)

•Don’t shrink the constant (bias) term!
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Warning: ridge regression is not

invariant to input rescaling.

Often we want to “whiten/sphere”
inputs first (i.e. rescale them so
their sample covariance is a
multiple of the identity matrix).

Lasso 14

• Shrinkage has less variance but doesn’t give sparse models like
subset selection does. Can we get the best of both worlds?

• Lasso: squared error with absolute weight penalty.

e =
∑

n

(yn − w⊤x)2 + λ
∑

i

|wi|

• Requires quadratic programming to solve, but still unique optimum.

Shrinkage Factor s
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A very cool thing happens.
As you increase the lasso penalty,
many coefficients go exactly to zero.
Why is that? Geometry!

Error Function Geometry 15

wi

wj

w
|w|

2 e

w_lasso

w_ridge



Beyond Linear Regression 16

•We can augment the inputs, not just with a constant to get a bias
term, but with lots of other things.

• If we decide beforehand on how to augment the input, this is still
linear regression:

y =
∑

j

wjhj(x)

• For linear regression, just use h0 = 1, hj = xj.

•Optimal weights are still easy to find:

e =
∑

n

(yn − w⊤h(x))2

w∗ = (HH⊤)−1Hy⊤

where h(x) is a vector of basis function outputs and H is a matrix
with columns h(xn) (sometimes called the “design matrix”).

Generalized Linear Models 17

• Any fixed, generalized basis set that depends on the inputs can be
used to make a generalized linear model.

• Elements of basis are called dictionary functions.

• Examples include splines, radial basis functions, wavelets, etc.

• Common things to add: quadratic or other polynomial terms,
sinusoidal terms, exponentials, square roots, logarithms, etc.

• Terms can depend on more than one input e.g.
hj(x) = x2x8x9

hj(x) = ‖x‖2

hj(x) = [a ≤ xi ≤ b][c ≤ xj ≤ d]

• These models can also be use for classification:
as inputs to logistic/softmax regression, as a space for Fisher
disciminants/Gaussians class-conditionals, KNN, etc.

• This is a simple version of the “kernel” idea (more later).

Splines 18

• You can construct a special basis set that gives piecewise constant
functions between pre-specified split points (“knots”) ai:

h1 = (x−a1)+ h2 = (x−a2)+ . . . hk = (x−ak)+ hk+1 = x hk+2 = 1

where (x − ai)+ is the positive part of (x − ai).

• To enforce continuity up to the (r − 1)st derivative, use

h1 = (x − a1)
r
+ . . . hk = (x − ak)r+ hk+1 = xr . . . hk+r+1 = 1

•Most common: cubic splines, corresponding to r = 3.

• Can also enforce linearity beyond edges: natural cubic spline.

h1 h2 h3

a1 a2 a3 ai

Radial Basis Functions 19

•One way to generate a nice automatic basis is to place a dictionary
element on each input datapoint, whose value depends on the
distance of the input from the point it is on top of:

hn(x) = exp

[

− 1

2σ2
‖x − xn‖2

]

• Tricky part is setting σ2.

x x x x x1 2 3 4 5

h h h h h1 2 3 4 5



Neural Networks 20

• Another generalized linear model, this time with the basis set:

hj = g





∑

i

wijxi





with g() a “squashing” function with limited outputs, e.g.

g(z) =
1

1 + e−z
g(z) = tanh(z)

• The outputs hj are known as the “hidden layer”.

β

W

σ

x

ij

y

h j

Learning the Basis 21

• In all the examples above, the basis functions were fixed.

• Ideally, we’d like to adjust the basis set also.
E.g. where are the knots for splines, the centres for RBF’s, what
are the input-to-hidden weights for neural networks?

• Three strategies: (1) shrinkage, (2) subset selection, (3) adaptive.

1. We can do ridge regression on a large generalized basis set, by
penalizing the coefficients. For splines, this technique gives
smoothing splines.

2. We can also start with a huge dictionary and try to pick a few
elements. This is subset selection from a broader choice set.

3. Lastly, we can have a fixed number of adaptive elements. Next
lecture we can see how to do this, for certain error functions, using
gradient descent. But the solutions are no longer optimal.

Multivariate Adaptive Regression Splines (MARS) 22

• Piecewise constant 1D splines with knots at each data point value
in each dimension. Also the “reflected pairs”.

hni(x) = (xi − xni)+ h2ni(x) = (xni − xi)+

• Now use forward stepwise regression, chosing from these basic
elements and any product between them and an existing dictionary
element.

• Then do backwards deletion.

• Another Stanford masterpiece. (What’s in the water in Palo Alto?)

Things I won’t cover 23

• Regression trees (very similar to MARS but worse).

• Partial Least Squares

• Empirical Bayes (ML-II)
Automatic Relevance Determination (ARD)

• Canonical Correlation Analysis
(regression with a low-rank constraint)

More reading: Hastie et al. Ch4,5,9.4


