CSC2515 — Machine Learning Sam Roweis

LECTURE 3:

CLASSIFICATION II

September 26, 2006

PROBABILISTIC CLASSIFICATION: BAYES CLASSIFIERS 2

e Generative model: p(x,y) = p(y)p(x|y).
p(y) are called class priors.
p(x|y) are called class-conditional feature distributions.

e For the prior we use a Bernoulli or multinomial:
ply = k|m) = mp with >, 7 = 1; 7 > 0.

e What classification rule should we use? Pick the class that best
models the data, ie argmax, p(x|y)? No! This behaves very badly
if the class priors are skewed. MAP is best:
argmax;, p(y|x)=argmax, p(x,y) = argmax, log p(x|y)+logp(y)

e How should we fit model parameters? Maximum joint likelihood.

=232, logp(x",y") = 32, log p(x"[y") + log p(y")
1) Sort data into batches by class label.
2) Estimate p(y) by counting size of batches (plus regularization).
3) Estimate p(x|y) separately within each batch using ML

on the class-conditional model (also with regularization).

REVIEW: CLASSIFICATION 1

THREE KEY REGULARIZATION IDEAS 3

e Given examples of a discrete class label y and some features x.
e Goal: compute y for new x.
e Last class: compute a discriminant f(y|x) and then take max y.

e This class: probabilistic classifiers. Two approaches:
Generative: model p(x,y) = p(y)p(x|y);
then use Bayes' rule to infer conditional p(y|x).
Discriminative: model posterior p(y|x) directly.

e Generative approach is related to joint density estimation while
discriminative approach is closer to regression.

e To avoid overfitting, we can put priors on the parameters of both
the class and class-conditional feature distributions.

e We can also tie some parameters together so that fewer of them
are estimated using more data.

e Finally, we can make factorization or independence assumptions
about the distributions. In particular, for the class-conditional
distributions we can assume the features are fully dependent, partly
dependent, or independent (!
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CLASS PRIORS AND MULTINOMIAL SMOOTHING 4

e Let's say you were trying to estimate the bias of a coin. You flip it
K times; what is your estimate of the probability z of heads?

e One answer: maximum likelihood. z = #h/K.

e What if you flip it 2 times and you get both heads? Do you think
that z = 1?7 Would you be infinitely surprised to see a tail?

e ML is almost always a bad idea. We need to incorporate a prior

belief to modulate the results of small numbers of trials.

. . . T * #h+(¥
e We do this with a technique called smoothing: =" = =55

« are the number of “pseudo-counts” you use for your prior.

e The same situation occurs when estimating class priors from data:
#c+
o) =vrFm
N+ Ca
e A very common setting is « = 1 which is called Laplace Smoothing.

REGULARIZED GAUSSIANS 6

e Idea 1: assume all the covariances are the same (tie parameters).
This is exactly Fisher's linear discriminant analysis.
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e Idea 2: use a Wishart prior on the covariance matrix. (Smoothing!)
This “fattens up” the posteriors by making the MAP estimates the
sample covariances plus a bit of the identity matrix.

o [dea 3: Make independence assumptions to get diagonal or
identity-multiple covariances. (i.e. sparse inverse covariances.)
More on this in a few minutes...

GAUSSIAN CLASS-CONDITIONAL DISTRIBUTIONS 5

o If all the input features x; are continuous, a popular choice is a
Gaussian class-conditional model.

1
plxly = k. 6) = 22| 2 exp {—5<x s (x m}

o Fitting: use the following simple but useful fact.
The maximum likelihood fit of a Gaussian to some data is the
Gaussian whose mean is equal to the data mean and whose
covariance is equal to the sample covariance.

[Try to prove this as an exercise in understanding likelihood, algebra, and calculus all at once!]

e One very nice feature of this model is that the maximum likelihood
parameters can be found in closed-form, so we don't have to worry
about numerical optimization, local minima, search, etc.

e Seems easy. And works surprisingly well.
But we can do even better with some simple regularization...

GAUSSIAN BAYES CLASSIFIER 7

o Maximum likelihood estimates for parameters:
priors 7. use observed frequencies of classes (plus smoothing)
means fi;.: use class means
covariance ¥: use data from single class or pooled data (x" — pi,n)
to estimate (full/diagonal) covariances

e Compute the posterior via Bayes' rule. For equal covariances:
Dy = kx. 0) = p(xly = ﬁ Oply =i€|7f)
> p(xly = j,0)p(y = jIr)
exp{p) S1x — S g /2 + log my }
> cxp{,ujTZ_lx — u;Z_lu‘j/Z + log7;}
o x
-~ e {B]x)/2

Zj eﬁjTX

where (. = [ . ; (,ungluk + log 7.)] (last term is bias)




LINEAR GEOMETRY 8

e Taking the ratio of any two posteriors (the “odds”) shows that the
contours of equal pairwise probability are linear surfaces in the
feature space if the covariances of all classes are equal:

=k|x,0
Z—EZ — j;x, 95 = exp { (B, — 4j) "'x}
e The pairwise discrimination contours p(y;.) = p(y;) are orthogonal
to the differences of the means in feature space when X = o1.
For general 3 (shared b/w all classes) the same is true in the
transformed feature space u = X7 !x.

e The priors do not change the geometry, they only shift the
operating point on the logit by the log-odds log(m. /7).

e Summary: for equal class-covariances, we obtain a linear classifier.

e If we use different covariances for each class, we have a quadratic
classifier with conic section decision surfaces.

DISCRIMINATIVE MODELS 10

o Observation: if p(y|x) are linear
functions of x (or monotone
transforms), decision surfaces will be
piecewise linear.

e Idea: parametrize p(y|x) directly, .
forget p(x,y) and Bayes' rule. N I

e Advantages: We don't need to model the density of the features
p(x) which often takes lots of parameters and seems redundant
since many densities give the same linear classifier.

e Disadvantages: We cannot detect outliers, compare models using
likelihoods or generate new labelled data.

e What should our objective function be? We'll try to use one that is
closer to the one we care about at test time (ie error rate).

EXPONENTIAL FAMILY CLASS-CONDITIONALS 9

e Bayes Classifier has the same form whenever the class-conditional
densities are any exponential family density:
p(xly = k,ng) = h(x) exp{nx — a(ng)}
p(xly =k, ng)ply = k|r)
> p(xly = j,mj)ply = j|m)
exp{n.x —a(ng)}
S exp{n]x — aln)}
e x

—
> e

where 3. = [ ; —a(n;)] and we have augmented x with a

constant component always equal to 1 (bias term).

ply = klx,n) =

e Resulting classifier is linear in the sufficient statistics x.

LOGISTIC/SOFTMAX REGRESSION 11

e Model: y is a multinomial random
variable whose posterior is the “softmax”

of linear functions of the feature vector x.
T
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o Fitting: now we optimize the conditional log-likelihood:
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SOFTMAX/LOGIT 12

e The squashing function is known as the softmax or logit:

o) = < gl = —
Z]‘ e 1+e M

e It is invertible (up to a constant):
2 =loggp+c  n=loglg/1—g)

o Derivative is easy:

0y
ai]‘ — o — 6) D g1-g)

ARTIFICIAL NEURAL NETWORKS 14

e Historically motivated by relations to biology, but for our purposes,
ANNSs are just nonlinear classification machines of the form:
k|x, 0 i 0 h bl
=) = s =t
A

where h; = a(b}x) are known as the hidden unit activations; y;.
are the output units and z; are the input units.

e The nonlinear scalar function o is called an activation function.
We usually use invertible and differentiable activation functions.

o If the activation function is /inear, the whole network reduces™® to a
linear network: equivalent to logistic regression.
[*Only if there are at least as many hiddens as inputs and outputs.]|

e |t is often a good idea to add “skip weights” directly connecting
inputs to outputs to take care of this linear component directly.

MORE ON LOGISTIC REGRESSION 13

e Hardest Part: picking the feature vector x (see next slide!).

e Amazing fact: the conditional likelihood is convex™ in the
parameters 6 (assuming regularization). Still no local minimal!
But the optimal parameters cannot be computed in closed form.

e However, the gradient is easy to compute; so easy to optimize.
Slow: gradient descent, IIS. Fast: BFGS, Newton-Raphson, IRLS.

e Regularization? Gaussian prior on 6 (weight decay): add €3 6 to
the cost function, which subtracts 2¢6 from each gradient.

e Logistic regression could really be called “softmax linear regression”.
Log odds (logit) between any two classes is linear in parameters.

e * Consider what happens if there are two features with identical
classification patterns in our training data. Logistic Regression can
only see the sum of the corresponding weights.

Luckily, weight decay will solve this. Moral: always regularize!

COMMON ACTIVATION F'UNCTIONS 15

e Two common activation functions: sigmoid and hyperbolic tangent

1 aih(z) = exp(z) — exp(—2)
1+ exp(—=2) tanh(z) exp(z) + exp(—=z)

+1 tanh(z)

sigmoid(z) =

sigmoid(z) +1

0

e For small weights, these functions will be operating near zero and
their behaviour will be almost linear.

e Thus, for small weights, the network behaves essentially linearly.

e But for larger weights, we are effectively learning the input feature
functions for a non-linear version of logistic regression.

e In general we want a saturating activation function (why?).




GEOMETRY OF ANNS 16

e ANNs can be thought of as generalized linear models, where the
basis functions (hidden units) are sigmoidal “cliffs”.

o The cliff direction is determined by the input-to-hidden weights,
and the cliffs are combined by the hidden-to-output weights.

e We include bias units of course, and these set where the cliff is
positioned relative to the origin.

DISCRETE BAYESIAN CLASSIFIER 18

e If the inputs are discrete (categorical), what should we do?

e The simplest class-conditional model is a joint multinomial (table):
pler=a,m2=b,...ly=c) =1y,

e This is conceptually correct, but there's a big practical problem.

o Fitting: ML params are observed counts:
e = > nlyn = clz1 = affzg = b][. . ] ]
ab--. > nlyn = ¢
e Consider the 16x16 digits at 256 gray levels.

e How many entries in the table? How many will be zero?
What happens at test time? Doh!

o We obviously need some regularlization.
Smoothing will not help much here. Unless we know about the
relationships between inputs beforehand, sharing parameters is hard
also (what to share?). But what about independence?

NEURAL NETWORKS FOR CLASSIFICATION 17

e Neural nets with one hidden layer trained for classification are doing
nonlinear logistic regression:

p(y = k|x) = softmax[0] o(Bx)]

where 6 and B are the first and second layer weights and o() is a
squashing function (e.g. tanh) that operates componentwise.

softmax’ ) () Oy
0

B
OO0O0O000OOO0

e Gradient of conditional likelihood still easily computable, using the
efficient backpropagation algorithm which we'll see later.

e But: We lose the convexity property — local minima problems.

NAIVE (ID10T’S) BAYES CLASSIFIER 19

e Assumption: conditioned on class, attributes are independent.
pxly) = Hp (zily)

e Sounds crazy right? Right! But it works.

e Algorithm: sort data cases into bins according to yy,.
Compute marginal probabilities p(y = ¢) using frequencies.

e For each class, estimate distribution of ith

variable: p(x;|ly = ¢).
o At test time, compute argmax,. p(c|x) using
¢(x) = argmax,. p(c|x) = argmax,. [log p(x|c) + log p(c)]

= argmax,. [logp(c) + Zlo plx;)c)]

e Even if the assumption is wrong, this does well on 0—1 loss.
[Domingos & Pazzani]




DISCRETE (MULTINOMIAL) NAIVE BAYES 20

Discrete features x;, assumed independent given the class label 3.
plzi=jly=k) = Nijk

p(x|y = k,n) HHT}J% J

Classification rule:

GAUSSIAN NAIVE BAYES 22

e This is just a Gaussian Bayes Classifier with a separate but diagonal
covariance matrix for each class.

e Equivalent to fitting a 1D Gaussian to each input for each class.
o NB: Decision surfaces are quadratics, not linear...

e Even better idea:

Y
e . L .
11 H n7[jk J] Blend between full, diagonal and identity covarainces.
ply = klx,n) = p—
Zq Tq Hz H] nzyq
Bl x
ek
S - O
q X1 X Xm
B = logniig - njk - - Mij - - - log ]
x=[r1=Lx1=2;...;2;=7;...;1] @
FITTING DISCRETE NAIVE BAYES 21 Noisy-OR CLASSIFIER 23

e ML parameters are class-conditional frequency counts:
- _ 2alri" = Jlly" = K]
" Zn[ "= k]
e How do we know? Write down the likelihood:

D) = Z log p(y"|) + Z log p(z;"[y", )
n ni

and optimize it by setting its derivative to zero
(carefulI enforce normalization with Lagrange multipliers):

szz 7‘7 n = k 1Og771jk:+z)‘zk‘ Zj nijk)

no gk
ot Yol =Jlly" =k )\
- ik
ok ik

or
=0 = \p= y'=k =’
ik 4 ;[ | ik

e Many probabilistic models can be obtained as noisy versions of
formulas from propositional logic.

e Noisy-OR: each input z; activates output y w/some probability.

ply =0|x,a) = H ! = exp ZmZ log ov;
) 1

e Letting 6, = — log o; we get yet another linear classifier:

i
ply=1x,0)=1-¢"

X




JOINT vs. CONDITIONAL MODELS 24

e Many of the methods we have seen so far have linear or piecewise
linear decision surfaces in some space x’:
LDA, perceptron, Gaussian Bayes, Naive Bayes, Noisy-OR, KNN,...

e But the criteria used to find this hyperplane is different:

e KNN /perceptron optimize training set classification error.

e Gauss/Naive Bayes are joint models; optimize p(x, y)=p(x)p(y|x).
e Logistic Regression/NN are conditional: optimize p(y|x) directly.

e Very important point: in general there is a large difference between
the architecture used for classification and the objective function
used to optimize the parameters of the architecture.

e See reading...

FUTHER POINTS...

26

e Last class: non-parametric (e.g. K-nearest-neighbour).

Those classifiers return a single guess for y without a distribution.

e This class: probabilistic generative models p(x,y) (e.g. Gaussian
class-conditional, Naive Bayes) & discriminative (conditional)
models p(y|x) (e.g. logistic regression, ANNs, noisy-OR).

(Plus many more we didn't talk about , e.g. probit regression,
complementary log-log, generalized linear models, ...)

e Advanced topic: kernel machine classifiers. (e.g. kernel voted
perceptron, support vector machines, Gaussian processes).

e Advanced topic: combining multiple weak classifiers into a single
stronger one using boosting, bagging, stacking...

Readings: Hastie et. al, Ch4; Duda&Hart, Ch3,4.10

CLASSIFICATION VIA REGRESSION? 25

e We could forget that y was a discrete (categorical) random variable
and just attempt to model p(y|x) using regression.

e Idea: do regression to an indicator matrix.
(in binary case p(y = 1|x) is also the conditional expectation)

e For two classes, this is equivalent™ to LDA. For 3 or more, disaster...

e Generally a bad idea. Noise models (e.g. Gaussian) for regression
are totally inappropriate, and fits are oversensitive to outliers.
Furthermore, gives unreasonable predictions < 0 and > 1.




