LECTURE 2:

CLASSIFICATION I

Sam Roweis

September 20, 2005

Class 0

```
Subject: New Conde download

Subject: Relighbourhood Component Analysis
Subject: New Control of Analysis Paper
Subj
```

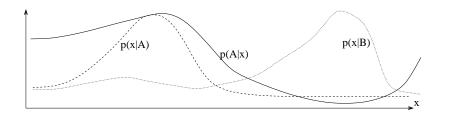
Class 1

```
Subject: Daily Stock Barrowster against
Subject: Pall college gains Pemmond
Subject: Pall college gain
```

REMINDER: CLASSIFICATION

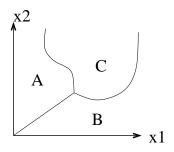
- Multiple inputs x (can be continuous, discrete or both).
- Single discrete output *y*.
- Goal: predict output on future unseen inputs.
- From a probabilistic point of view, we are using Bayes rule:

$$p(y|\mathbf{x}) = \frac{p(\mathbf{x}|y)p(y)}{p(\mathbf{x})} = \frac{p(\mathbf{x}|y)p(y)}{\sum_{y'} p(\mathbf{x}|y')p(y')}$$



VORONOI TESSELLATION, DECISION SURFACES

- For continuous inputs, we can view the problem as one of segmenting the input space into regions which belong to a single class, i.e. constant output.
- Such a segmentation is the "Voronoi tessellation" for our classifier.
- The boundaries between regions are the "decision surfaces".
- Training a classifier == defining decision surfaces.



K-Nearest-Neighbour

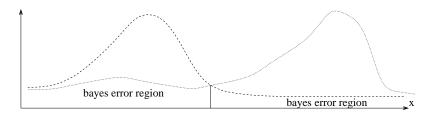
- Finally: a real algorithm!
- ullet To classify a test point, chose the most common class amongst its K nearest neighbours in the training set.
- Algorithm K-NN

```
c-test \leftarrow KNN(K,x-train,c-train,x-test) {
  d(m,n) = distance between x-train(m) and x-test(n)
  n(n,1) = index of l-th smallest entry of d(:,n) [*]
  c(n,1) = c-train(n(n,1))
  c-test(n) = most common value in c(n,1:K) [**]
}
```

- \bullet If ties at * when l=K, increase K for that n only.
- If ties at **, decrease K for that n only.
- ullet confidence pprox (#votes for class) / K
- Q: How should we select K? A: Cross-Validation (coming soon).

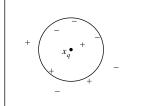
PROBABILISTIC MODEL, BAYES ERROR RATE

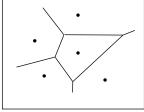
- Model original data as coming from joint pdf $p(\mathbf{x}, y)$. Classification == trying to learn conditional density $p(y|\mathbf{x})$.
- Even if we get the perfect model, our error rate may not be zero. Why? Classes may overlap.
- The best we could ever do if our cost function is number of errors is to guess $y^* = \operatorname{argmax}_y \ p(y|\mathbf{x})$. (The error rate of this procedure is known as the "Bayes error".)



More on K-NN

- \bullet Typical distance = squared Euclidean $d(m,n) = \sum_d (x_d^m x_d^n)^2$
- If Euclidean distance is used, decision surfaces are piecewise linear.





- ullet Trick: remember the K^{th} smallest distance so far, and break out of the summation over dimensions if you exceed it.
- In low-d with lots of training points you can build "KD trees", "ball trees" or other data structures to speed up the query time.
- In high-d, save time by computing the distance of each training point from the min corner and using the "annulus bound".

ERROR BOUNDS FOR NN

ullet Amazing fact: asymptotically, err(1-NN) < 2 err(Bayes):

$$e_B \le e_{1_{NN}} \le 2e_B - \frac{M}{M-1}e_B^2$$

this is a tight upper bound, achieved in the "zero-information" case when the classes have identical densities.

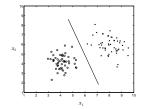
• For K-NN there are also bounds. e.g. for two classes and odd K:

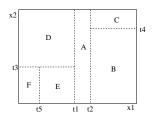
$$e_B \leq e_{K_{NN}} \leq \sum_{i=0}^{(K-1)/2} \binom{k}{i} \left[e_B^{i+1} (1-e_B)^{k-i} + e_B^{k-i} (1-e_B)^{i+1} \right]$$

• For more on these bounds, see the book *A Probabilistic Theory of Pattern Recognition*, by L. Devroye, L. Gyorfi & G. Lugosi (1996).

Nonparametric (Instance-Based) Models

- Q: What are the parameters in K-NN? What is the complexity?
 A: the scalar K and the entire training set.
 Models which need the entire training set at test time but (hopefully) have very few other parameters are known as nonparametric, instance-based or case based.
- What if we want a classifier that uses only a small number of parameters at test time? (e.g. for speed or memory reasons) ldea 1: single linear boundary, of arbitrary orientation ldea 2: many boundaries, but axis-parallel & tree structured





EXAMPLE: USPS DIGITS

- Take 16x16 grayscale images (8bit) of handwritten digits.
- Use Euclidean distance in raw pixel space (dumb!) and 7-nn.
- Classification error (leave-one-out): 4.85%.

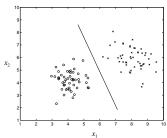
Example 244 7 Nearest Neighbours
0000000
2228887
44444444
94949

LINEAR CLASSIFICATION FOR BINARY OUTPUT

• Goal: find the line (or hyperplane) which best separates two classes:

$$c(x) = \operatorname{sign}[\mathbf{x}_{weight}^{\mathsf{T}} - \underbrace{w_0}_{threshold}]$$

- ullet w is a vector perpendicular to decision boundary
- ullet This is the opposite of non-parametric: only d+1 parameters!
- ullet Typically we augment ${f x}$ with a constant term ± 1 ("bias unit") and then absorb w_0 into ${f w}$, so we don't have to treat it specially.



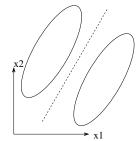
FISHER'S LINEAR DISCRIMINANT

• Observation: If each class has a Gaussian distribution (with same covariances) then the Bayes decision boundary is linear:

$$\mathbf{w}^* = \Sigma^{-1}(\mu_0 - \mu_1)$$

$$w_0^* = \frac{1}{2}\mathbf{w}^{\top}(\mu_0 + \mu_1) - \mathbf{w}^{\top}(\mu_0 - \mu_1) \left[\frac{\log p_0 - \log p_1}{(\mu_0 - \mu_1)^{\top} \Sigma^{-1}(\mu_0 - \mu_1)} \right]$$

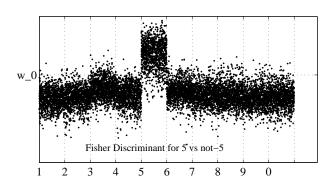
• Idea (Fisher'36):
 Assume each class is Gaussian even if they aren't!
 Fit μ_i and Σ as sample mean and sample covariance (shared).



• This also maximizes the ratio of *cross-class scatter* to *within class scatter*: $(\bar{z_0} - \bar{z_1})^2/(\mathrm{var}(z_0) - \mathrm{var}(z_1))$

DIGITS AGAIN

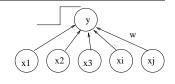
Train to discriminant "5" from others. Error = 3.59%



LINEAR DISCRIMINANTS ARE PERCEPTRONS

• The architecture we are using

$$c(x) = \operatorname{sign}[\mathbf{x}^{\top}\mathbf{w} - w_0]$$



can be thought of as a circuit/network.

- It was studied extensively in the 1960s and is known as a perceptron.
- There is another way to train the weights, other than Fisher.

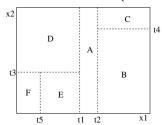
 Algorithm perceptronTrain (Rosenblatt'56)

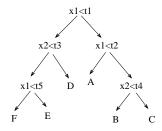
PERCEPTRON LEARNING RULES

- Now: cycle through examples, when you make an error, add/subtract the example from the weight vector depending on its true class.
- Amazingly, for separable training sets, this always converges.
 (We absorb the threshold as a "bias" variable always equal to -1.)
- For non-separable datasets, you need to remember the sets of weights which you have seen so far, and combine them somehow.
- One way: keep the set that survived unchanged for the longest number of (random) pattern presentations. (Gallant's *pocket algorithm*.)
- Better way: Freund & Shapire's *voted perceptron* algorithm. Remember all sets and the length of time they survived.
- Perceptron, voted-perceptron, weighted-majority, kernel perceptron, Winnow, and other algorithms have a frumpy reputation but they are actually extremely powerful and useful, especially using the kernel trick. Try these before more complex classifiers such as SVMs!

DECISION TREES

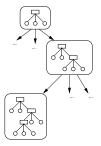
- What if we want more than two regions?
- We could consider a fixed number of arbitrary linear segments but even cheaper is to use axis-aligned splits (one dimension each).
- If these form a hierarchical partition, then the classifier is called a *decision tree* or (axis-aligned) *classification tree*.
- Each internal node tests one attribute; leaves assign a class.
- Equivalent to a disjunction of conjunctions of constraints on attribute values (if-then rules).





COST FUNCTION FOR DECISION TREES

- Define a measure of "class impurity" in a set of examples. Push each example down the tree, how "pure" are leaves?
- Goal: minimize expected sum of impurity at leaves at test time.
- Two problems:
- 1) We don't know true distribution $p(\mathbf{x}, y)$.
- 2) Search: even if we knew $p(\mathbf{x}, y)$ finding optimal tree is NP.
- So we will take a suboptimal (greedy) approach.



LEARNING (INDUCING) DECISION TREES

- Need to pick the order of split axes and values of split points. Many algorithms: CART, ID3, C4.5, C5.0.
- Almost all have the following structure:
- 1. Put all examples into the root node.
- 2. At each node: search all dimensions, on each one chose split which most reduces impurity; chose the best split.
- 3. Sort the data cases into the daughter nodes based on the split.
- 4. Recurse until a leaf condition:
 - number of examples at node is too small
 - all examples at node have same class
 - all examples at node have same inputs
- 5. Prune tree down to some maximum number of leaves. (Possibly using a different impurity measure than for growing.)

IMPURITY MEASURES

ullet When considering splitting data D at a node on x_i , we measure:

$$Gain(D; x_i) = I(D) - \sum_{v \in split(x_i)} \frac{|D_{iv}|}{|D|} I(D_{iv})$$

• Common impurity measures:

Entropy: $I(D) = -\sum_{c} p_c(D) \log p_c(D)$ (two classes)

 $\mathbf{Misclass} \colon I(D) = 1 - p_{c^*}$

Gini: $I(D) = \sum_{c} \sum_{c' \neq c} p_c(D) p_{c'}(D)$ = $\sum_{c} p_c(D) (1 - p_c(D))$ =

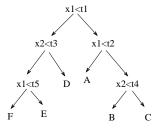
(Gini is the avgerage error if we stochastically classify with node prior)

- 70 00 00 02 04 06 08 1.0
- These often favour multi-way splits.
- One solution: normalize by "split information":

$$S(D) = -\sum_{v} \frac{|D_{iv}|}{|D|} \log \frac{|D_{iv}|}{|D|}$$

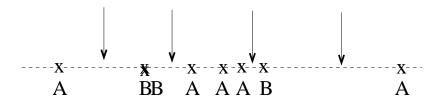
RESTRICT TO BINARY SPLITS

- A better solution is to always constrain ourselves to binary splits.
- For ordered discrete or real valued nodes, split is natural. Also easy to compute.
- ullet For a discrete attribute with M settings, looks like we need to consider 2^M-1 splits. But for two classes, there is a trick:
 - 1. Order the settings according to $p(c|x_i = m)$.
 - 2. Search exhaustively over q, grouping first q and last M-q.
 - 3. Optimal split is one of those.



REAL VALUED ATTRIBUTES

- For real valued attributes, what splits should we consider?
- \bullet Idea1: discretize the real value into M bins.
- Idea2: Search for a scalar value to split on.
 Sounds hard! Lots of real values. But there is a trick:
 Only need to consider splits at midpoints between observed values.
 In fact, only need to consider splits at midpoints between observed values with different classes.
- Complexity: $N \log N + 2N|C|$



Algorithm: DT

```
root of decision tree = SplitNode(train-data,nmin)
subtree ← SplitNode(D) {
    c = most common class in D
    if (all class(D) same) or (all x(D) same) or (size(D) < nmin)
    then return a leaf of class c
    else for each xi measure Gain(D;xi)
    return a node which splits on best xi and has daughters:
    - SplitNode(Div) for all split vals v with nonempty Div
    - leaf of class c for values with empty Div
    }
G ← Gain(D,i) {
    G = I(D)
    for each value v in split(xi)
    Div = cases in D with xi=v
    G = G - I(Div)*size(Div)/size(D)
}</pre>
```

Overfitting in Trees

- Just as with most other models, decision trees can overfit. In fact they are quite powerful.
- eg: Expressive power of binary trees
 Q: If all input and outputs are binary, what class of Boolean functions can DTs represent?
- A: All Boolean functions.
- Hence we must regularize to control capacity.
- Typically we do this by limiting the number of leaf nodes. Formally, we define: $\Phi(T) = \sum_{leaves} I(l) + \alpha |leaves|$.
- ullet Minimizing this for any lpha is equivalent to finding the tree of a fixed size with smallest impurity. (cf. Lagrange multipliers).
- Practically, we achieve this via pruning.
 Often we use Gini/Entropy to grow tree and Misclass to prune it.

PRUNING DECISION TREES

- ullet Finding the "optimal" pruned tree. It can be shown that if you start with a tree T_0 and insist on using a rooted subtree of it, the following sequence of trees contains the optimum tree for all numbers of leaves:
 - 1. Let U(node) = I(node)-I(subtree-rooted-at-node)
- 2. Replace the non-leaf node with the smallest value of: U(node)/leaves-below-node with a leaf node having majority class.
- Even after pruning, decision trees still have problems:
- cannot capture additive structure (OR), for this MARS is better
- cannot deal with linear combinations of variables

OPEN QUESTIONS...

- How do we chose *K* in K-NN? (Cross-validation)
- How do we chose T_{max} for decision trees? (Cross-validation)
- Can Fisher's Discriminant overfit? (What do you think?)
- What about nearest-neighbour or tree-based models for regression as well as classification? (Good idea!)

Next class: Logistic regression, Neural Nets for Classification, Class-Conditional Models (Gaussian and Naive Bayes)

DT VARIANTS

- ID3 (Quinlan)
 - split values are all possible values of x_i
 - I(D) is entropy no pruning
- C4.5, C5.0 (Quinlan)
- binary splits
- I(D) is entropy error-pruning
- "rule simplification"
- CART (Breiman et. al)
- binary splits
- I(D) is Gini
- minimum-leaf subtree pruning